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 on May 21, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

Figure: Heat sensitive film record of
impact test with a high explosive. Darker
regions correspond to higher
temperature.

I Focus on low-speed
impacts scenarios -
“insults”.

I Accidental ignition is
caused by “hot spots”.

I How are these generated?

Image from Hot spot ignition mechanisms for explosives and propellants, Field et al.
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Background

I Adiabatic compression of trapped gas spaces.
I Viscous heating of material rapidly extruded between the

impacting surfaces.
I Friction between the impacting surfaces, the explosive

crystals, and/or grit particles in the explosive layer.
I Localised adiabatic shear of the material during mechanical

failure.

ESGI

2.2 Experimental evidence of shear banding in high explo-
sives

(2.2.1) Williamson et al. [12] performed quasistatic compression tests on EDC37,
a polymer-bonded explosive, in which they observed clear evidence of the
formation of shear bands at all temperatures, all shear rates, and all aspect
ratios. Photographs of shear banding from [12] are shown in Figure 3.

Figure 3: Photograph of shear bands in EDC37 [12].

(2.2.2) Similarly, Balzer et al. [1] performed drop-weight tests on other high explo-
sives (PETN and RDX) where results were recorded using heat-sensitive
film. They observed stripes of localised heating that they identified with
shear bands acting as planar heat sources.

(2.2.3) Additionally, the stress-strain curve observed in Figure 2 is characteristic
of the strain-softening observed in adiabatic shear banding [13].

(2.2.4) Another intriguing piece of experimental work by Clancy et al. [3] dis-
cusses damage localisation in a high explosive (PBX-9501) in the context
of brittle crack formation. It is possible, however, that they too were
observing shear banding.

(2.2.5) From this experimental evidence, it seems likely that shear banding, and
possibly other forms of damage localisation, are significant in the mechani-
cal failure of high explosives. Indeed, the combined observations that shear
banding is observed at comparatively mild strain-rates [12] and that shear
banding leads to observable local heating [1] suggests that shear banding
will be important in the Steven test and other related experiments, and
may be a key factor in ignition.

4

Figure: Photograph of shear bands in a high explosive.

Image from Temperature-time response of a polymer bonded explosive in compression (EDC37), Williamson
et al. 4/25



Low Speed Impact Modelling
Steven Test

I Experiments conducted at
AWE.

I Current LS-Dyna FE model
is currently main approach.

I High values of HERMES
Ignition parameter seen
near confining walls.

I Predicts scorching seen in
experiments.

Base unit

Explosive

sample

Strong ring Projectile

Cover plate

PTFE ring

8

Low Speed Impact Modelling – Steven Test
� Various experiments at AWE.
� One example is the Steven Test.
� LS-Dyna FE model with HERMES 

ignition model is currently the main 
modelling tool.

� Half axisymmetric model shown top 
right. Detail bottom left shows 
contours of HERMES ignition 
parameter Ign and mesh distortion.

� Predicts site of scorching due to 
burning seen in experiment.

� Results in Curtis, Jones, Hughes 
and Reaugh, Shock Compression 
of Condensed Matter, Vol. 1, 2011, 
669-672. 

Images courtesy of AWE from CEA Workshop on Explosives, Tours, France
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Low Speed Impact Modelling
Spigot Impact

I Localised impact.

I High values of HERMES
Ignition parameter at
leading edge of spigot.

I Impact velocity ranges
from 10 - 40 m s−1.

10

Low Speed Impact Modelling - Spigot 
Penetration

Contours of the ignition parameter 200 
microseconds after an impact at 40 ms-1 

� Critical HMX Ign 200. 
� Range of velocities tested 

10-40 ms-1.
� Maximum Ign is found at 

the leading edge of spigot.
� Run fails as high mesh 

distortion occurs.
� Hughes, Reaugh, Curtis 

and Jones, 38th Int. Pyro. 
Seminar, Denver, CO, 
338-346, June 2012.

Images courtesy of AWE from CEA Workshop on Explosives, Tours, France
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Simplified Low Speed Impact Modelling
Motivation

I Improve safety during
everyday conditions.

I Avoid issues associated with
numerical models, e.g.

I severe mesh deformation,
I model break down near

walls.

I Numerical validation.

I Focus on specific
mechanisms/gain physical
insight.

Drop testi.

r h

h
r ≪ 1

Simple shearii.

i. J.P. Curtis, A Model of Explosive Ignition due to Pinch, 38th International Pyrotechnics Seminar, Denver,
Colorado, USA.
ii. J.P. Curtis, Explosive Ignition due to Adiabatic Shear, 39th International Pyrotechnics Seminar, Valencia, Spain.

7/25



Reactive Shear Bands
Shear band schematic

Reactive Shear Bands:
A model for shear localisation during deformation of reactive thermo-visco-elastic-plastic materials
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Introduction
The mechanisms responsible for ignition of explosive mate-
rials in response to low energy stimuli, known as “insults” in
the literature, are still not well understood. It is in general
believed that explosive ignition is of thermal origin, with me-
chanical energy being converted into heat energy in localised
regions, forming so-called “hot spots”. Modelling such igni-
tion mechanisms using numerical hydrocodes proves to o�er
some considerable challenges [1]. To supplement the numer-
ical approach, we seek to develop analytical solutions. Here
we develop a model to investigate how an instability caused
by thermal softening may give rise to localised plastic defor-
mation which may lead to subsequent ignition.

Figure 1: Shear bands arising from friction adjacent to the plates by
which an explosive cylinder is being pinched. Contours are of an em-
pirical ignition parameter, with red corresponding to high values of the
parameter showing ignition. Avoiding issues such as mesh distortion is
a prime motivation for looking at shear analytically. Figure taken from
[2], with permission.

We exploit an idealised one-dimensional geometry (see Fig-
ure 2), using asymptotic methods to obtain a reduced system
of equations which govern the growth rate of perturbations
to a uniform shearing motion. This allows us to study the
growth and initiation of shear bands in a reactive material.
Is found that the growth of perturbations to the temperature
and stress are controlled by three dimensionless parameters.
This is in contrast to the inert case, in which the growth is
controlled by a single parameter [3].

Constitutive Model
The strain-rate model proposed by DiLellio and Olmstead [3]
accounts for thermal softening and strain rate dependence,
and takes the following exponential form

“̇(s, T ) = �̇ú exp{≠[B≠1
1 (Tp ≠ T ) + B≠1

2 (sp ≠ s)]},
where �̇ú, Tp and sp are the reference strain-rate, tempera-
ture and stress, respectively. The parameters B1 and B2 are
related to strain-rate sensitivity and thermal sensitivity.

Governing Equations

We investigate the standard one-dimensional model for the
formation of a shear band, with addition of a chemical re-
action modelled using a nonlinear Arrhenius source term
(shown in red).
In dimensional form the governing equations read:

flvt = sy , momentum balance;
flcTt = ŸTyy + —s “̇ + fl�Ae≠ E

RT , energy balance;
st = G(vy ≠ “̇), elastic relationship;
“̇ = “̇(s, T , “), plastic flow law;

“ =
Z t

0
“̇(t Õ) dt Õ, plastic strain.

Here the dependent variables are velocity v , stress s, tem-
perature T , and plastic strain rate “̇. The plastic strain “
is determined by integration of strain rate. The material
constants fl, G , c , Ÿ, —, �, A, E and R , are the density,
elastic shear modulus, specific heat, thermal conductivity,
Taylor-Quinney coe�cient, heat of reaction, rate constant,
activation energy and molar gas constant, respectively.

Model Schematic
Schematic of uniform shearing vs. a shear band centred about y = 0.

uniform shear

shear band

y = 0

y = ≠L

y = L

V

≠V

Figure 2: Solid lines show typical velocity profiles. Localised plastic de-
formation and/or reaction is induced by an inhomogeneity in the thermal
flux along the centreline. The thin zone of localisation is identified as
a boundary layer, and the problem is treated as a perturbation to the
elastic solution. It is assumed that the perturbations will be uniform in
the shearing direction so that a one-dimensional model is appropriate.

Results

Here we give results obtained from the boundary layer
analysis. Representative parameter values have been
chosen using data from [3], [4] and [5]. The parameter
�t has been held fixed at a typical value of 0.01.
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Figure 3: Numerical results showing the evolution
of the non-dimensional perturbations to temper-
ature (a) and stress (b) for various �p and �R .
The solid black line shows the exact solution
f (÷) = g(÷) = e÷ for the special case of �p = 1
and vanishing reaction (�R = 0). DiLellio and
Olmstead [3] suggest that occurrence of a shear
band in the inert case would typically be associated
with �p < 10. This criterion is shown as a thick
black dashed line (⇧ ⇧ ⇧).

Panels (c) and (d) show the time evolution
of the non-dimensional centreline temperature T̃ (t̃)
and stress s̃(t̃) calculated from the asymptotic
analysis. The process can be split into three
stages: elastic, plastic and reaction. The transition
times between the stages may be predicted by the
asymptotic theory, and show excellent agreement
when compared with numerical solution of the full
governing equations. It is clear to observe the stress
decrease associated with shear banding, and the
rapid increase in temperature associated with the
commencement of thermal runaway.

Asymptotic Analysis
The analysis results in two coupled equations which control the magni-
tude of the temperature and stress perturbations, respectively. These
read

f (÷) =
Z ÷

≠Œ
[fi(÷ ≠ ÷Õ)]≠1/2

⇢
exp [÷Õ + f (÷Õ) ≠ g(÷Õ)]

+ �R exp [�t(÷Õ ≠ ÷Õ
R) + f (÷Õ) ≠ f (÷Õ

R)]
�

d÷Õ,

g(÷) = �p exp [÷ + f (÷) ≠ g(÷)] .
Here ÷ is a time-like variable, and ÷R a critical reaction timescale. The
non-dimensional parameters �p, �R and �t are know in terms of prop-
erties of the material and applied deformation, and relate to the plastic
behaviour, reaction and shear-rate, respectively.

0 20 40 60 80 100
0

5

10

15

Shear Band

No Shear Band

�p
� R

Figure 4: A sketch of the
region in the �P ≠ �R

plane in which a shear
band is formed. The pa-
rameter �t has been held
fixed at a typical value of
0.01.

Conclusions
• The reactive shear band has been identified as a boundary layer.
• Asymptotic theory leads to a reduced system of two coupled

equations, governed by three dimensionless parameters.
• Critical timescales for onset of plastic work and reaction are well

predicted by the asymptotic results.
• Introduction of a reaction leads to shear banding for values of �p

outside of the criterion identified in the inert case [3].
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Reactive Shear Bands
Governing equations

One-dimensional model of shear band:

ρvt = sy , momentum balance;

ρcTt = κTyy + βs γ̇ + ρΩAe−
E
RT , energy balance;

st = G (vy − γ̇), elastic relationship;

γ̇ = γ̇(s,T , γ), plastic flow law;

γ =

∫ t

0
γ̇(t ′) dt ′, plastic strain.

Here the dependent variables are velocity v , stress s, temperature T , and plastic strain
rate γ̇. The plastic strain γ is determined by integration of strain rate. The material
constants ρ, G , c, κ, β, Ω, A, E and R, are the density, elastic shear modulus, specific
heat, thermal conductivity, Taylor-Quinney coefficient, heat of reaction, rate constant,
activation energy and molar gas constant, respectively.
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Reactive Shear Bands
Constitutive law

Exponential strain-rate law

γ̇(s,T ) = Γ̇∗ exp{−[B−1
1 (Tp − T ) + B−1

2 (sp − s)]},

where Γ̇∗, Tp and sp are the reference strain-rate, temperature and
stress, respectively. The parameters B1,B2 are related to
strain-rate sensitivity M and thermal sensitivity P via the
definitions

M ≡ 1

sp

∂s

∂ log Γ̇
=

B2

sp
, P ≡ −Tp

sp

∂s

∂T
=

(
B2

sp

)/(
B1

Tp

)
.

Shear band formation due to a thermal flux inhomogeneity, DiLellio, J.A. and Olmstead, W.E.
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Reactive Shear Bands
Numerical solution – “cohesive scheme”

Elastic wave speed:

S =
√

G/ρ.

Grid size: ∆y .
Time step: ∆t = ∆y/S .

b

b

b

b

b

b

(i − 1)+

i−

i+

(i + 1)−

∆y

∆y

∆t

dy/dt = −S

dy/dt = S

δcoh ≡ γ∆y

t t + ∆t

(v+
i − v−

i )/∆y = γ̇(si, γi, Ti)

i. F. Zhou et. al. A numerical methodology for investigating the formation of adiabatic shear bands. Journal
of the Mechanics and Physics of Solids, 2006.
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Reactive Shear Bands
Numerical solution – onset of shear band
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Reactive Shear Bands
Boundary Layer Analysis

I Heat flux inhomogeneity q(t) at y = 0 initiates a zone of
localised shearing.

I Plastic localisation zone is identified as a boundary layer.

I The typical length scale is taken to be the thermal length scale

l =

(
κs0

ρcG Γ̇0

)1/2

,

effectively placing the boundary at an infinite distance from
the shear band.
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Reactive Shear Bands
Boundary Layer Analysis

The non-dimensional governing equations are recast in the form

st = ρ̂−1

∫ t

0
syy (y , t ′) dt ′ + ω − γ̇,

Tt = Tyy + λs γ̇ + Ω̂Â exp

(
− Ê

T

)
,

where

t∗ =
s0

G Γ̇0

, l =

(
κs0

ρcG Γ̇0

)1/2

, Γ̇0 =
v0

l
, ω =

w

Γ̇0

,

ρ̂ =
κΓ̇0

cs0
, λ =

βs2
0

ρcGT0
, Ê =

E

RT0
, Ω̂ =

Ω

cT0
, Â = At∗.
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Reactive Shear Bands
Boundary Layer Analysis

For early times the inert elastic solution given by

Te(y , t) = 1 + δ

∫ t

0

e
− y2

4(t−t′)

[π(t − t ′)]1/2
h(t ′) dt ′,

se(y , t) = 1 + ωt,

is appropriate. Here the heat flux inhomogeneity used to initiate a
shear band is represented as

q(t) = δh(t), 0 ≤ h(t) ≤ 1.

15/25



Reactive Shear Bands
Boundary Layer Analysis

I Identify small parameter ε:

B1

T0
= β−1

1 ε,
B2

s0
= β−1

2 ε, 0 < ε� 1,

where β1 and β2 are O(1) constants.

I Exploit the largeness of the (non-dimensional) pre-exponential
factor Â:

Â = Â0
Ê 1/2

TR
exp

(
Ê

TR

)
,

TR

Ê 1/2
∼ ε1/2,

where TR is the critical reaction temperature, Ê is the
non-dimensional activation energy, and Â0 is O(1).
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Reactive Shear Bands
Boundary Layer Analysis

Boundary layer variables:

y = εξ, t = tp + ετ, ξ > 0, τ > − tp
ε
→ −∞,

with tp the critical plastic time.
Look for solution as a perturbation to the elastic solution:

T = Te(εξ, tp + ετ) + εT1(ξ, τ) + ε3/2T2(ξ, τ) + · · · ,
s = se(εξ, tp + ετ) + εs1(ξ, τ) + ε3/2s2(ξ, τ) + · · · .

Define critical reaction time τR as the solution of

TR = Te(0, tp + ετR) + εT1(0, τR) + o(ε),

where the function T1 is to be determined as part of the solution.
17/25



Reactive Shear Bands
Boundary Layer Analysis

Coupled equations for magnitudes of temperature and stress
perturbations at the centre of the shear band:

f (η) =

∫ η

−∞
[π(η − η′)]−1/2

{
exp

[
η′ + f (η′)− g(η′)

]

+ ΛR exp
[
Λτ (η′ − η′R) + f (η′)− f (η′R)

]}
dη′,

g(η) = Λp exp [η + f (η)− g(η)] ,

where η = β3τ + log

[
λγ̇0(1+ωtp)

bβ
1/2
3

]
, and

Λp =
β2(ρ̂0β3)1/2

β1λ(1 + ωtp)
, ΛR =

Ω̂Â0

bβ
1/2
3

, Λt =
a

β3
.

Here β3 = β1a+ β2ω and a = Tet (0, tp).
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Reactive Shear Bands
Boundary Layer Analysis

In terms of dimensional quantities the parameters are
approximately given by:

Λp ≈
ρGTp(κcw)1/2

PM1/2s
5/2
P

≈ 1–100,

ΛR ≈
ΩM1/2

cTp
≈ 0–20,

Λt ≈
a

β3
∼ δ � 1.
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Reactive Shear Bands
Boundary Layer Analysis
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Figure 1: Magnitude of the perturbations to the temperature f(⌘) and stress g(⌘). Panels (a) and (b) show
results for fixed ⇤p = 10 and various ⇤R, and panels (c) and (d) show results for fixed ⇤p = 100 and various
⇤R. In all panels the thick dashed line shows solution associated with the shear band criterion ⇤p = 10,
⇤R = 0 = ⇤t.
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Reactive Shear Bands
Boundary Layer Analysis
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Introduction
The mechanisms responsible for ignition of explosive mate-
rials in response to low energy stimuli, known as “insults” in
the literature, are still not well understood. It is in general
believed that explosive ignition is of thermal origin, with me-
chanical energy being converted into heat energy in localised
regions, forming so-called “hot spots”. Modelling such igni-
tion mechanisms using numerical hydrocodes proves to o�er
some considerable challenges [1]. To supplement the numer-
ical approach, we seek to develop analytical solutions. Here
we develop a model to investigate how an instability caused
by thermal softening may give rise to localised plastic defor-
mation which may lead to subsequent ignition.

Figure 1: Shear bands arising from friction adjacent to the plates by
which an explosive cylinder is being pinched. Contours are of an em-
pirical ignition parameter, with red corresponding to high values of the
parameter showing ignition. Avoiding issues such as mesh distortion is
a prime motivation for looking at shear analytically. Figure taken from
[2], with permission.

We exploit an idealised one-dimensional geometry (see Fig-
ure 2), using asymptotic methods to obtain a reduced system
of equations which govern the growth rate of perturbations
to a uniform shearing motion. This allows us to study the
growth and initiation of shear bands in a reactive material.
Is found that the growth of perturbations to the temperature
and stress are controlled by three dimensionless parameters.
This is in contrast to the inert case, in which the growth is
controlled by a single parameter [3].

Constitutive Model
The strain-rate model proposed by DiLellio and Olmstead [3]
accounts for thermal softening and strain rate dependence,
and takes the following exponential form

“̇(s, T ) = �̇ú exp{≠[B≠1
1 (Tp ≠ T ) + B≠1

2 (sp ≠ s)]},
where �̇ú, Tp and sp are the reference strain-rate, tempera-
ture and stress, respectively. The parameters B1 and B2 are
related to strain-rate sensitivity and thermal sensitivity.

Governing Equations

We investigate the standard one-dimensional model for the
formation of a shear band, with addition of a chemical re-
action modelled using a nonlinear Arrhenius source term
(shown in red).
In dimensional form the governing equations read:

flvt = sy , momentum balance;
flcTt = ŸTyy + —s “̇ + fl�Ae≠ E

RT , energy balance;
st = G(vy ≠ “̇), elastic relationship;
“̇ = “̇(s, T , “), plastic flow law;

“ =
Z t

0
“̇(t Õ) dt Õ, plastic strain.

Here the dependent variables are velocity v , stress s, tem-
perature T , and plastic strain rate “̇. The plastic strain “
is determined by integration of strain rate. The material
constants fl, G , c , Ÿ, —, �, A, E and R , are the density,
elastic shear modulus, specific heat, thermal conductivity,
Taylor-Quinney coe�cient, heat of reaction, rate constant,
activation energy and molar gas constant, respectively.

Model Schematic
Schematic of uniform shearing vs. a shear band centred about y = 0.
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Figure 2: Solid lines show typical velocity profiles. Localised plastic de-
formation and/or reaction is induced by an inhomogeneity in the thermal
flux along the centreline. The thin zone of localisation is identified as
a boundary layer, and the problem is treated as a perturbation to the
elastic solution. It is assumed that the perturbations will be uniform in
the shearing direction so that a one-dimensional model is appropriate.

Results

Here we give results obtained from the boundary layer
analysis. Representative parameter values have been
chosen using data from [3], [4] and [5]. The parameter
�t has been held fixed at a typical value of 0.01.
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Figure 3: Numerical results showing the evolution
of the non-dimensional perturbations to temper-
ature (a) and stress (b) for various �p and �R .
The solid black line shows the exact solution
f (÷) = g(÷) = e÷ for the special case of �p = 1
and vanishing reaction (�R = 0). DiLellio and
Olmstead [3] suggest that occurrence of a shear
band in the inert case would typically be associated
with �p < 10. This criterion is shown as a thick
black dashed line (⇧ ⇧ ⇧).

Panels (c) and (d) show the time evolution
of the non-dimensional centreline temperature T̃ (t̃)
and stress s̃(t̃) calculated from the asymptotic
analysis. The process can be split into three
stages: elastic, plastic and reaction. The transition
times between the stages may be predicted by the
asymptotic theory, and show excellent agreement
when compared with numerical solution of the full
governing equations. It is clear to observe the stress
decrease associated with shear banding, and the
rapid increase in temperature associated with the
commencement of thermal runaway.

Asymptotic Analysis
The analysis results in two coupled equations which control the magni-
tude of the temperature and stress perturbations, respectively. These
read

f (÷) =
Z ÷

≠Œ
[fi(÷ ≠ ÷Õ)]≠1/2

⇢
exp [÷Õ + f (÷Õ) ≠ g(÷Õ)]

+ �R exp [�t(÷Õ ≠ ÷Õ
R) + f (÷Õ) ≠ f (÷Õ

R)]
�

d÷Õ,

g(÷) = �p exp [÷ + f (÷) ≠ g(÷)] .
Here ÷ is a time-like variable, and ÷R a critical reaction timescale. The
non-dimensional parameters �p, �R and �t are know in terms of prop-
erties of the material and applied deformation, and relate to the plastic
behaviour, reaction and shear-rate, respectively.
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Shear Band

No Shear Band

�p

� R
Figure 4: A sketch of the
region in the �P ≠ �R

plane in which a shear
band is formed. The pa-
rameter �t has been held
fixed at a typical value of
0.01.

Conclusions
• The reactive shear band has been identified as a boundary layer.
• Asymptotic theory leads to a reduced system of two coupled

equations, governed by three dimensionless parameters.
• Critical timescales for onset of plastic work and reaction are well

predicted by the asymptotic results.
• Introduction of a reaction leads to shear banding for values of �p

outside of the criterion identified in the inert case [3].
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Elastic-plastic Model
Boundary Layer Analysis

The reactive solution may be matched onto the earlier plastic
solution:
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Figure: The centreline temperature T = Te + εT1 and stress s = se + εs1 for
t = tp + ετ . Here the critical plastic and reaction temperatures are Tp = 1.01 and
TR = 1.02, giving critical times tp = 0.02 and tR = 0.0419, respectively. The value of
the small parameter was ε = 10−2.

22/25



Reactive Shear Bands
Boundary layer analysis – numerical comparison
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Figure 1: Magnitude of the perturbations to the temperature f(⌘) and stress g(⌘). Panels (a) and (b) show
results for fixed ⇤p = 10 and various ⇤R, and panels (c) and (d) show results for fixed ⇤p = 100 and various
⇤R. In all panels the thick dashed line shows solution associated with the shear band criterion ⇤p = 10,
⇤R = 0 = ⇤t.
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Figure: Comparison of the numerical and asymptotic solutions for the centreline
temperature and stress near to the critical plastic time scale tp = 0.195. Note that
ε = 10−3.
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Reactive Shear Bands
Conclusions

I Numerical solution of Thermo-Viscoplastic model suggest
boundary layer.

I Elastic-plastic model more amenable to boundary layer
methods.

I Plastic and reaction timescales allow for asymptotic solution
near to critical plastic and reaction times tp and tR .

I Key features of asymptotic solution compare well with
numerical solution using so-called “cohesive” schemei..

I Can a similar approach model the onset of reaction in a
fully-formed shear band?

i. F. Zhou et. al. A numerical methodology for investigating the formation of adiabatic shear bands. Journal
of the Mechanics and Physics of Solids, 2006.
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