

Investigation into the detonation performance of Urea Hydrogen Peroxide

1. Context

- Current Home Made Explosive (HME) threat worldwide:
 - Mixing of highly energetic pyrotechnics
 - Synthesis of peroxide explosives
- Carbamide Peroxide or **Urea Hydrogen Peroxide** (**UHP**), widely used in the dental, cosmetic and pharmaceutical industries, has proven detonable at small-scale under heavy confinement [1].

2. Objectives and challenges

- Characterise UHP detonation performance for risk > <u>Underwater firings</u>: assessment purposes [2].
 Shock pressure (Brisan
- Collect maximum experimental data, particularly desirable for evaluating the performance of non-ideal explosives: lab, field and underwater instrumented firings, with military reference explosive, supported by thermochemical calculations and numerical simulations.
- > Assess the **level of agreement** between:
 - Laboratory, field and underwater data
 - Small-scale and large-scale experiments
 - Experiments, theory and simulations

3. General approach

4. Preliminary results

Field firings: Detonation velocity & Blast parameters

5. What's next

- Non-ideality vs numerical simulations
- > Size effects vs validity of small-scale set-ups
- Propose and discuss TNT equivalences for UHP

References

[1] F. Halleux, J.-F. Pons, I. Wilson, R. Van Riet, M. Lefebvre, Small-Scale Detonation of Industrial Urea-Hydrogen Peroxide, *Propellants, Explosives, Pyrotechnics* **2022**, 47 (2), e202100250.

[2] F. Halleux, J.-F. Pons, I. Wilson, R. Van Riet, B. Simoens, M. Lefebvre, Detonation Performance of Urea Hydrogen Peroxide, *Proceedings of the 24th Seminar on New Trends in Research of Energetic Materials*, Pardubice, Czech Republic, April 6–8, **2022**, 333–337.

<u>Acknowledgements</u>

The EOD divers from SEDEE-DOVO are warmly acknowledged for the support during the underwater experimental campaign.

F. Halleux a, c, Dr J-F. Pons a, Dr I. Wilson a, Dr R. Van Riet b, Prof M. Lefebvre b

- a) Centre for Defence Chemistry, Cranfield University, Defence Academy of the United Kingdom F.Halleux@cranfield.ac.uk
- b) Department of Chemistry, Royal Military Academy, Brussels, Belgium
- c) Explosive Ordnance Disposal Battalion (SEDEE-DOVO), Oud-Heverlee, Belgium

www.cranfield.ac.uk