

Ground Vibration Testing of a High Aspect Ratio Wing with Revolving Clamp

G. Dessena¹, D.I. Ignatyev¹, J.F. Whidborne¹, A. Pontillo², and L. Zanotti Fragonara¹ ¹Cranfield University, ²University of Bristol 8th September 2022, 33rd ICAS - Stockholm www.cranfield.ac.uk

Ground Vibration Testing of a High Aspect Ratio Wing with Revolving Clamp

Main Contributions

- 1 Design and development of a revolving clamp for High Aspect Ratio wings
- 2 Extensive Ground Vibration Testing on a High Aspect Ratio wing at different amplitudes and setting angles

Motivation

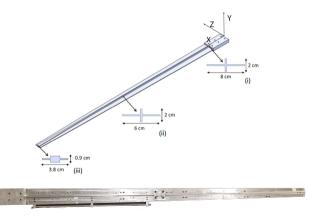
- Testing and modelling in-flight operations of a High Aspect Ratio (HAR) wing is expensive and time consuming
- Ground Vibration Testing is already part of the design and test phase of an aircraft and could be enhanced to deliver more information
- A variation of the gravitational vector changes the resting shape of the wing
- Investigate the relationship between setting angle, input force, and modal parameters

Background

Ground Vibration Testing

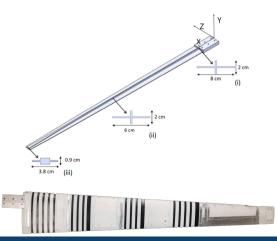
- Finite Element Models (FEMs) are developed as early as the preliminary design stage, but they need validation
- Ground Vibration Testing (GVT) allow to obtain the vibration response of the structure from a given input
- Modal parameters can also be extracted from experimental data and used to validate or update the FEM

The High Aspect Ratio Wing

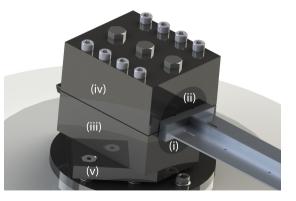

- eXperimental BeaRDS-2 (XB-2) wing is a dynamically scaled model of a A320-like civil airliner wing
- BeaRDS framework was a project from Cranfield University which aimed to create a work flow for the design, testing and modelling of flexible wings based on dynamically scaled prototypes.

Materials

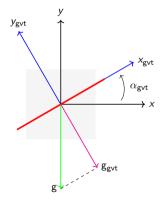
- 6082-T6 Aluminium
- Stainless Steel
- Digital ABS
- Agilus 30

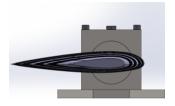

Property	Details	Unit	
Semi span	1.5	m	
Root chord	236 mr		
Tip chord	83	mm	
LE sweep	14.9	0	
Mass	3.024	kg	

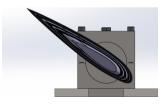
Materials


- 6082-T6 Aluminium
- Stainless Steel
- Digital ABS
- Agilus 30

Property	Details	Unit	
Semi span	1.5	m	
Root chord	236	mm	
Tip chord	83	mm	
LE sweep	14.9	0	
Mass	3.024	kg	

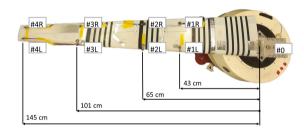

The Revolving Clamp

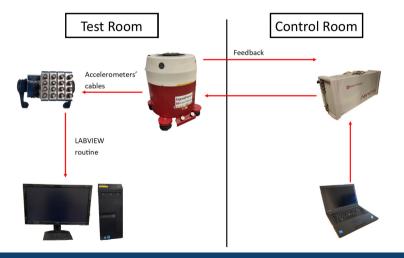

- 5 parts
 - Lower sock
 - Upper sock
 - Lower end
 - Upper end
 - Sase plate
- Aluminium
- 4.189 kg



- Increase in the wing's inclination angle (α_{gvt})
- \bullet decreases g_{gvt}
- $\Uparrow \alpha_{\rm gvt} \Downarrow {\rm g}_{\rm gvt}$ and the wing's deflection

$$g_{\alpha_{gvt}} = g \times \cos(\alpha_{gvt})$$
 (1)

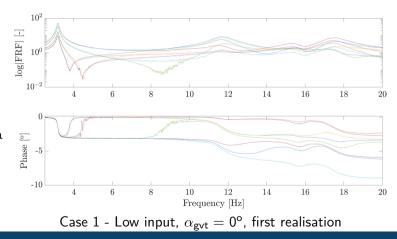




Experimental Setup

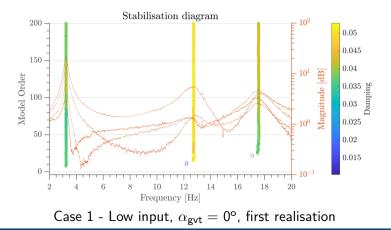
- Accelerometers position:
 - Genetic Algorithm-based technique using the cross-correlation of adjacent modes [1]
- 4 accelerometers rows
- 8 total
- Vertical and rotational displacements

Note that the accelerometers do not appear aligned due to the optical effect of the camera lens.



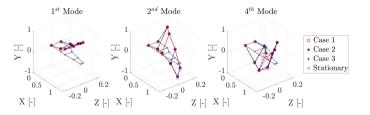
- Band-limited random vibration for 20 min
- 3 different setting angles
- 3 input amplitude (0.649, 0.919, 1.590 RMS ms⁻²)
- 9 total cases
- 5 realisation for each case (45 total tests)

Test Matrix					
Case	Input	$\alpha_{\sf gvt}$ [°]			
1	Low	0			
2	Medium	0			
3	High	0			
4	Low	5			
5	Medium	5			
6	High	5			
7	Low	10			
8	Medium	10			
9	High	10			

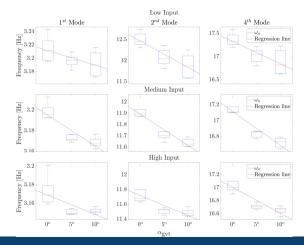

Experimental Data

- Desampling (5120 Hz to 256 Hz)
- Frequency domain conversion (via FFT)
- Frequency Response Functions (FRF) filtered with MATLAB smoothdata

Stabilisation diagram

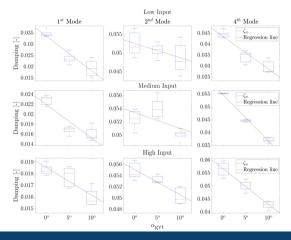

- 4 peaks from FRF plot
- Third mode disregarded as lagging dominant [2]
- $\Delta f = 1\%$, $\Delta \zeta = 10\%$ and MAC = 0.95
- Identification method: the Loewner Framework [3]

Modal Parameters


- Cases 1, 2, 3 Low, Medium, and High input, $\alpha_{\rm gvt} = 0^{\rm o}$
- Average over five realisations
- Slight decrease (softening) in all modes
- \bullet Less for the 1^{st} mode

Case	1		2		3	
Mode	ω_n [Hz]	ζ _n [-]	ω_n [Hz]	ζη [-]	ω_n [Hz]	ζ_n [-]
1 st Bending	3.21	0.035	3.20	0.023	3.17	0.018
2 nd Coupled	12.50	0.053	11.92	0.053	11.76	0.055
4 th Coupled	17.36	0.045	17.15	0.045	17.05	0.057

Natural Frequencies


- $\alpha_{\rm gvt}$ influence on natural frequencies
- Global trend: $\Downarrow \propto \alpha_{\rm gvt}$
- Some spurious occurrences

© Cranfield University

Damping Ratio

- $\alpha_{\rm gvt}$ influence on damping ratios
- Global trend: $\Downarrow \propto \alpha_{\rm gvt}$
- Some spurious occurrences

Conclusions and Future Works

- A clear linear relationship between inclination angle and modal parameters is established over a range of input amplitude
- The frequencies and damping ratios are found to decrease with changes in the inclination angle
- The modelling of wing's FEM that takes into consideration these changes is left for future works

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) for funding this research through grant number 2277626.

Bibliography

- [1] A. Schulze, J. Zierath, S.-E. Rosenow, R. Bockhahn, R. Rachholz, and C. Woernle, "Optimal sensor placement for modal testing on wind turbines," *Journal of Physics: Conference Series*, vol. 753, no. 7, p. 072031, Sep. 2016, ISSN: 1742-6588. DOI: 10.1088/1742-6596/753/7/072031. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/753/7/072031.
- G. Dessena, D. I. Ignatyev, J. F. Whidborne, A. Pontillo, and L. Zanotti Fragonara, "Ground Vibration Testing of a Flexible Wing: A Benchmark and Case Study," *Aerospace*, vol. 9, no. 8, p. 438, Aug. 2022, ISSN: 2226-4310. DOI: 10.3390/aerospace9080438.
 [Online]. Available: https://www.mdpi.com/2226-4310/9/8/438.
- [3] G. Dessena, M. Civera, L. Zanotti Fragonara, D. I. Ignatyev, and J. F. Whidborne, "A Loewner-based system identification and structural health monitoring approach for mechanical systems," *in preparation*, p. 25, 2022.

Questions

If you have any suggestions or further questions then please contact me via email at Gabriele.Dessena@cranfield.ac.uk.

Email

Paper Download

Presentation Download

www.cranfield.ac.uk

T: +44 (0)1234 750111

- 灯 @cranfielduni
- 🖻 @cranfielduni
- 仔 /cranfielduni

© Cranfield University