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A Kriging Approach to Model Updating for Damage
Detection

Main Contributions
1 Development of a refined surrogate-based single objective optimisation routine.
2 Application of the newly developed technique to numerical systems for finite

element model updating and damage detection
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Motivation

Finite Element Models (FEMs) hardly ever represent correctly a given real system. Hence,
some sort of tuning is always needed
Traditionally, sensitivity, Monte-Carlo, and other iterative methods are used
Iterative methods can be inefficient when the search direction is random, or
pseudo-random
Response Surface Models (RSMs) offer an opportunity to strategically tune the model
Some existing RSM can have limited search capabilities
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Background

Finite Element Model Updating
FEM updating is the calibration of FEMs using experimental data

Direct
Matrix updates
Optimal matrix
Eigenstructure assignment

Indirect
Sensitivity-based
Response surface methods
(RSM)
Bayesian-Monte Carlo
Computational intelligence
Evolutionary algorithms
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Background
Response Surface Model

General idea: creating a response surface which mimics the relation between a function,
or problem, and its input variables
The RSM model can be a simple function, such as a polynomial, or more refined, such as
Kriging

Design of
Experiment (DoE) RSM fitting Updating Convergence
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Background

Efficient Global Optimization (EGO) is an RSM based on Kriging
Kriging is a surrogate model based on a stochastic process

ŷ(xxx i) = fff T (xxx i)β̂ββ + z(xxx i), i = 1, 2, . . . , n (1)
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Background

Based on the Expected Improvement (EI):
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Figure: EI function, one dimensional function (f (x))
and known values of f (x) (Adapted from [1])
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Methods

Main drawback of EGO is its global-only search
capability
refined Efficient Global Optimisation (rEGO)
introduces selection and refinement techniques
Two stopping criterion: a global one, EI, that
triggers search space reduction and data points
selection, and a local one based on input
paramaters’ Euclidean distance
These make rEGO a global-local method, rather
than only a global one
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Methods
The first stopping criterion is set to 0.1% and the second to 10-4

Search space refinement
Triggered by first stopping
criterion, EI based
Ensured by a minimum number
of points constraint (m x 10)
If original search bounds are
between [0,0] and [1,1] and
relative minimum at [0.25,0.75]
then the new interval: [0,0.5]
and [0.5,1]

Selection
The values which variables are
outside of the new search space
are excluded
Further, if total number of
values is more than m x 10
Points are de-clustered, such
that they are well-spaced in the
search domain
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Methods

FEM Updating Routine
rEGO is used to optimise a modal metric wrt stiffness and mass parameters

Let us consider a simple 2 DoF system:[
m1 0
0 m2

]{
q̈1
q̈2

}
+

[
k1 + k2 −k2
−k2 k2

]{
q1
q2

}
= 0 (3)

where
mn = xn × m(b)

n & kn = xn+4 × k(b)
n (4)

Where (b) stands for baseline
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Methods

The goal is to minimise the residuals of the modified total modal assurance criterion
(MTMACres) [2] to a set of modal parameters from a damaged system

MTMACres = 1 −
n∏

i=1

MAC(φφφE
i ,φφφ

N
i )(

1 +
|ωN

i −ωE
i |

|ωN
i +ωE

i |

) (5)

as MTMACres approaches zero the correlation increases
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Numerical System

Figure: 9 DoF system. (Retrieved from [3])

Usual formulation for mass-spring-damper system, where m1−9 = 1 kg, k1−9 = 10 kNm-1 and
ζ1−9 = 1%
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Numerical System

Scenario #
1 Undamaged
2 10% stiffness reduction in the fourth element
3 25% stiffness reduction in the fourth element
4 25% stiffness reduction in the fourth element and 10% stiffness reduction in the

seventh element
5 25% stiffness reduction in the second element, 10% stiffness reduction in the

fourth element and 10% stiffness reduction in the seventh element
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Numerical System

Scenario # 1 is taken as the reference for the updating of the model
The assumption is that the scale of xn corresponds to the measure of the damage in % at
the n element
Only kn are updated in this work
Results from rEGO are compared to:

I Theoretical (Actual)
I EGO
I Genetic algorithm (GA) (MATLAB’s standard with ftol = 10−4 and Max generation = 100)

10 evaluations for each case and method are taken into consideration
Same DoE results, from a Morris–Mitchell Optimal Latin Hypercube, are used for each
method
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Results

Figure: The mean values, over 10 realisations, of the identified damage in Scenarios # 2 and 3 by
rEGO, EGO, and GA vs the exact value .
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Results

Figure: The mean values, over 10 realisations, of the identified damage in Scenarios # 4 and 5 by
rEGO, EGO, and GA vs the exact value.
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Results

Table: Number of function evaluations for convergence.

Scenario #2 #3 #4 #5
min µ max min µ max min µ max min µ max

rEGO 159 281 382 172 286 494 274 329 391 217 331 433
EGO 104 115 131 100 111 130 103 112 129 100 106 119
GA 15600 17899 19210 15410 17424 19210 15030 16778 19210 13700 16778 19210

rEGO performs better than EGO
GA performance is comparable to rEGO
rEGO needs two order of magnitude less evaluations than GA and about 3 times EGO
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Conclusions

A new single objective optimisation technique based on EGO was introduced
rEGO, using the MTMACres, successfully detected damage in a numerical system
rEGO offered a good balance between precision, wrt EGO, and performance, wrt GA
rEGO can be used in other engineering applications, such as Computational Design
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Questions

If you have any suggestions or further questions then please contact me via email at
Gabriele.Dessena@cranfield.ac.uk.

Email Presentation Download
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