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Abstract—The lithium-sulfur (Li-S) batteries are high 

energy storage systems that can be used for electric grid and 

solar power air vehicle applications. Modelling and the state of 

charge (SOC) estimation of discharging Li-S are highly 

challenging than other batteries as the discharge voltage of Li-S 

batteries has highly nonlinear and typical characteristics than 

the Lithium-Ion batteries. For Li-S battery SOC estimation, 

literature has proposed filters and machine learning techniques, 

but no literature on sliding mode observer (SMO). This paper 

presents the SMO for discharging Li-S SOC estimation and 

compares it to the extended Kalman filter (EKF). Both 

estimators use a first-order equivalent circuit network (ECN) 

model of Li-S cell parameters given in the literature. The 

performance of such ECN model based SOC estimators 

influenced by the Q- uncertainty, which is a perturbation in the 

form of process noise state-space model. Therefore, this work 

studies an optimal trade-off characteristics of SMO and EKF 

over the Q-uncertainty. With constant and mixed-amplitude 

pulse load current sequences, numerical simulation has 

performed. Simulation results illustrate that the SMO is 

optimal, converges to the true SOC than the EKF when the 

perturbation increased. 

Keywords—Battery energy storage, nonlinear filters,  

Lithium-sulfur batteries, state of charge,  sliding mode observer. 

I. INTRODUCTION 

     Recently, the battery energy storage systems (BESSs) have 

been active research owing their applications including electric 

grids and vehicles. There are different battery technologies 

such as  Lithium-Ion(Li-Ion), lithium-sulfur, lithium-air and so 

on.  Compared commercialized well-known Li-Ion, the Li-S 

batteries have some good features [1] such as higher energy 

storage capabilities, safety, lesser-weight and low cost. Due to 

such features, the Li-S Such batteries can be used as energy 

storage systems in long-range vehicles including solar-

powered small aircraft [2]. Through the battery management 

systems (BMSs), the SOC plays significant role for the energy 

or power optimization, control and to improve safety of 

batteries. The BESSs of such applications require an 

appropriate algorithm to evaluate the state of charge (SOC) of 

the batteries. 

      The SOC estimation of discharging Li-S batteries is 

challenging as the open circuit voltage (OCV) of Li-S batteries 

has deep-dive high-plateau and flatten, poorly-observable low-

plateau behavior [1,3]. This behavior is different than the 

traditional Li-Ion batteries. Literature has proposed a couple of 

SOC estimators, for instance, the machine learning approaches 

such as nonlinear filters [4,5,6], adaptive nuero-fuzzy inference 

system (ANFIS) [7], and Support Vector Machine (SVM) [8],. 

But there is not literature on sliding mode observer (SMO) 

based SOC estimation for Li-S batteries though SMO were 

widely used for SOC estimation of Li-Ion [9-11]. This paper 

fulfills such literature gap by designing a sliding mode 

observer for Li-S battery cell.  

First, the SMO is designed for a deterministic first-order 

equivalent circuit network (ECN) model of discharging Li-S 

batteries. Next, on top of that, the perturbation is introduced 

into ECN model to study the robustness of the SMO. It is 

assumed that perturbation is Gaussian noise and it is bounded 

with known variance. The process noise is referred as Q-

uncertainty. According to voltage and parameter 

characteristics, the gains of SMO SOC estimator are chosen. 

The stability of the SMO can be studied by the Lyapunov error 

function. Applying constant and dynamic load current, the 

performance of SMO is analyzed. The SMO’s performance is 

compared to the traditional extended Kalman filter (EKF).  

While designing EKF, the discrete-time model is used, 

whereas a continuous-time model is used for SMO. However, 

both SMO based SOC estimator uses ECN model and 

prediction error minimization based parameterization available 

in the public domain [12]. Simulation results show that 

compared to the EKF the SMO is robust and the accuracy in 

error is less than five percent for considered Q-uncertainty.    

The rest of the paper is organized as follow: Section II 

studies the modelling complexity and SOC problem 

formulation of discharging Li-S battery cell. The EKF is 

presented section III, and the SMO is studied in section IV. 

Simulation results and their discussions are given in section V. 

Finally, section VI presents the conclusions and future works 

of this paper.  

II. LI-S BATTERY DISCHARGE VOLTAGE 

A. Deterministic ECN Model 

This section describes the deterministic state-space model of 

discharging Li-S battery model derived from ECN model 

given in Fig 1. Such model reported in the literature [12].  The 

modeling is repeated here because to contrast the discharge 

voltage of Li-S battery from the voltage of Li-Ion battery and 

to extend the deterministic model to uncertainty model. 
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 Fig.1  A first-order ECN model represents a Li-S battery cell.  



 
    Though the model is deterministic, the modeling 

complexity of Li-S batteries is higher than the transition Li-

Ion because the typical voltage characteristic. Fig 2 compares 

the voltage characteristics of typical Li-S and Li-Ion 

batteries. In Fig 2, the solid-blank line indicates the measured 

voltage of 2Ah Li-Ion battery given in [13], and the red-

dashed line represents the voltage of 2.72Ah Li-S battery that 

generated from the SIMULINK model [12]. These voltages 

are battery response to 2A constant current and begin from 

maximum voltage and end at the curt-off voltage of 

respective battery cell. It is an evident that the voltage of Li-

S has a deep-dive high plateau during 0 to 1500s and a flat-in 

nature low plateau from 1500s to 5000s approximately. The 

high- and low-plateau have joined with a sharp curve, which 

is an additional complexity in the modeling of Li-S batteries. 

Therefore, the output or measurement model of state-space 

for discharging Li-S batteries is quite different from the 

traditional one. Such difference is explained with an example 

in rest of this section.  The state-space model is written as   

�̇�(t) = 𝑓𝑐(𝑥(𝑡), 𝜃𝑏(𝑥1(𝑡)), 𝐼L(𝑡));     𝑥(𝑡0)                                 (1) 

𝑦(𝑡) = 𝑉𝑇 = ℎ𝑐(𝑥(𝑡), 𝜃𝑏(𝑥1(𝑡)), 𝐼L(𝑡))                                    (2) 

Where 𝑥(𝑡) = [
𝑆𝑂𝐶
𝑉𝑃

]  =  [
𝑥1(𝑡)

𝑥2(𝑡)
]      is a state vector, �̇�(t) is 

the first derivative of 𝑥(𝑡), and 𝜃𝑏(𝑥1(𝑡)) denotes parameters 

of ECN model, which are functions of SOC.  The 

deterministic SOC is evaluated from the following first-order 

differential equation   

�̇�1(𝑡) =  
−𝐼𝐿

3600 𝑄cap
;     𝑥1(𝑡0)                                              (3) 

where �̇�1(t)  is the first derivative of SOC at time t,  𝑥1(𝑡0) is 

the initial SOC at time 𝑡0 , the 𝑄cap  is the capacity of the 

battery, and 𝐼L is the load current or current taken out from 

the battery. The dynamic behavior of polarization voltage, 𝑉𝑃 

across the 1RC network is expressed as 

�̇�2(𝑡) =  
−1

𝐶P(𝑥1(𝑡))𝑅P(𝑥1(𝑡))
𝑥2(𝑡) +

𝐼L

𝐶P(𝑥1(𝑡))
; 𝑥2(0)                (4) 

where 𝑅P(𝑥1(𝑡)) and 𝐶P(𝑥1(𝑡)) are resistor and capacitor of 

1RC branch, respectively. 

From Fig 1, the battery terminal voltage, 𝑉𝑇(t), is expressed 

as    

𝑉𝑇(t) = 𝑉oc(𝑥1) − 𝑥2(t) − 𝐼L𝑅o(𝑥1)                 (5) 

where 𝑉oc(𝑥1) is the open circuit voltage of the battery, 𝑥2(t) 

denotes polarization voltage, and 𝑅o(𝑥1)  is the Ohmic 

resistance of the battery. Unlike the parameters of lithium-

ion, the 𝑉oc(𝑥1) and 𝑅o(𝑥1) of Li-S battery have high and 

low-plateau are joined by a partial sinusoidal function (PSF) 

[4] as follow: 

𝑉𝑂𝐶(𝑥1) =  𝛾(𝑥1(𝑡))𝑉𝑜𝑐,ℎ𝑖𝑔ℎ(𝑥1(𝑡)) 

                     +(1 − 𝛾(𝑥1(𝑡)))𝑉𝑜𝑐,𝑙𝑜𝑤(𝑥1(𝑡))                     (6) 

𝑅𝑜(𝑥1) =  𝛾(𝑥1(𝑡))𝑅𝑜,ℎ𝑖𝑔ℎ(𝑥1(𝑡)) 

                     +(1 − 𝛾(𝑥1(𝑡)))𝑅𝑜,𝑙𝑜𝑤(𝑥1(𝑡))                      (7) 

where 

𝑉𝑜𝑐,ℎ𝑖𝑔ℎ(𝑥1(𝑡)) = 𝑝1,𝑉𝑜ℎ𝑖𝑥1
𝑛 + 𝑝2,𝑣𝑜ℎ𝑖𝑥1

n−1 + ⋯ 

                                           +𝑝𝑛,𝑣𝑜ℎ𝑖  𝑥1  + 𝑝𝑛+1,𝑣𝑜ℎ𝑖         (8) 

𝑉𝑜𝑐,𝑙𝑜𝑤(𝑥1(𝑡)) = 𝑝1,𝑣𝑜𝑙𝑜𝑥1
𝑛 + 𝑝2,𝑣𝑜𝑙𝑜𝑥1

n−1 + ⋯ 

                                           +𝑝𝑛,𝑣𝑜𝑙𝑜  𝑥1  + 𝑝𝑛+1,𝑣𝑜𝑙𝑜        (9) 

𝑅𝑜,ℎ𝑖𝑔ℎ(𝑥1(𝑡)) = 𝑝1,𝑅𝑜ℎ𝑖𝑥1
𝑛 + 𝑝2,𝑅𝑜ℎ𝑖𝑥1

n−1 + ⋯ 

                                           +𝑝𝑛,𝑅𝑜ℎ𝑖  𝑥1  + 𝑝𝑛+1,𝑅𝑜ℎ𝑖        (10) 

𝑅𝑜,𝑙𝑜𝑤(𝑥1(𝑡)) = 𝑝1,𝑅𝑜𝑙𝑜𝑥1
𝑛 + 𝑝2,𝑅𝑜𝑙𝑜𝑥1

n−1 + ⋯ 

                                           +𝑝𝑛,𝑅𝑜𝑙𝑜  𝑥1  + 𝑝𝑛+1,𝑅𝑜𝑙𝑜        (11) 

and 

𝛾(𝑥1(𝑡)) =  {𝑓𝑃𝑆𝐹(𝑥1(𝑡))

0,  𝑖𝑓 𝐿𝑃

, 𝑖𝑓 𝐽𝑡𝑎𝑛𝑠

1, 𝑖𝑓 𝐻𝑃

                               (12) 

with 

𝑓𝑃𝑆𝐹(𝑥1(𝑡)) = 0.5 + 0.5 𝑠𝑖𝑛(2(5𝜋)(𝑥1 − m))               (13) 

𝐿𝑃: 0 ≤ 𝑥1 ≤ a
𝐽𝑡𝑟𝑎𝑛𝑠: a < 𝑥1 < b

𝐻𝑃: b ≤ 𝑥1 ≤ 1
                                                             (14) 

In (8)-(11), the 𝑝1,.., 𝑝2,… and 𝑝𝑛+1 are the coefficients of nth 

order polynomial for each parameters.  

According to Table 2 of [3], the parameters of 

REVB’s Li-S cell of 2.72 Ah at 20℃ are written as: 

𝑉𝑜𝑐,ℎ𝑖𝑔ℎ(𝑥1(𝑡)) = 108.1𝑥1
5  −  361.13𝑥1

4  +

           444.73𝑥1
3  −  238.18𝑥1

2  +  47.03𝑥1  +  1.88     (15) 

𝑉𝑜𝑐,𝑙𝑜𝑤(𝑥1(𝑡)) =  − 752.62𝑥1
8  +  2085.66𝑥1

7 −

       2392.87𝑥1
6  +  1466.98𝑥1

5  −  517.42𝑥1
4  +

             105.21𝑥1
3  −  11.69𝑥1

2  +  0.62𝑥1  +  2.1           (16) 

𝑅𝑜,ℎ𝑖𝑔ℎ(𝑥1) = − 1300.2𝑥1
6 +  6470.07𝑥1

5  

−  13362.95𝑥1
4 +  14656.94𝑥1

3   
                     − 9000.23𝑥1

2 + 2931.67𝑥1  −  395.2()    (17)                 

𝑅𝑜,𝑙𝑜𝑤(𝑥1) = 12.96𝑥1
6  −  28.54𝑥1

5 +  25.46𝑥1
4 −

                   11.65𝑥1
3  +  3.09𝑥1

2  −  0.42𝑥1  +  0.11      (18)                

𝑅𝑃(𝑥1) = 140.636𝑥1
9  −  613.186𝑥1

8  +  1088.525𝑥1
7   

− 1005.911𝑥1
6  +  512.386𝑥1

5 −  139.174𝑥1
4 

     + 16.887𝑥1
3  −  0.011𝑥1

2 −  0.223𝑥1  +  0.074      (19) 

𝐶𝑃(𝑥1) = 89414.28𝑥1
5  −  113090.73𝑥1

4  +  25401.28𝑥1
3

                      + 15392.5𝑥1
2 −  3017.3𝑥1 +  306.23         (20)

 

𝑓𝑃𝑆𝐹(𝑥1(𝑡)) = 0.5 + 0.5 𝑠𝑖𝑛(2(5𝜋)(𝑥1 − 0.68))             (21) 

𝐿𝑃: 0 ≤ 𝑥1 ≤ 0.63
𝐽𝑡𝑟𝑎𝑛𝑠: 0.63 < 𝑥1 < 0.73

𝐻𝑃: 0.73 ≤ 𝑥1 ≤ 1
(22) 

These parameters are used to characterize the discharging Li-

S cell from the deterministic model (1)-(2) with two different 

types of load current.  When applied mixed-amplitude pulse 

current sequence and assumed that the initial SOC was one, 

the Li-S cell have the typical high- and low-plateau voltage 

characteristic, as shown by Fig 3(a). Fig 3(b) shows the 

mixed-amplitude pulse current sequence. Fig 3(c) and Fig 

3(d) denote the SOC and the dynamic polarization voltage of 

cell to the pulse current, respectively. Fig 4 shows a zoomed 

section of the voltage to current pulses with different 

amplitudes such as 0.5A(0.2C), 1A(0.4C) and 1.5A(0.55C) 

are considered. This exhibits the impact of polarization 

voltage on the dynamic voltage behavior. Therefore, the SOC 

 
 
 Fig.2  Li-S vs Li-Ion: voltage comparison of Li-S and Li-Ion batteries 



estimators need a first of ECN model and its parameters are 

shown by Fig 3(e)-(h) .  

 

 
 

 

B. Model with Pertubation 

Due to unknown modeling error and sensor noise, the 

state and measurement models have perturbations. Such 

perturbations can be modelled as noise with known mean and 

variance. In this work, it is assumed the modelling error and 

sensor noise are Gaussian noise. The is assumed that the 

actual noise variance of batteries varies in the form of 

additive noise of the state-space model as   

�̇�(t) = 𝑓𝑐(𝑥(𝑡), 𝜃𝑏 , 𝑢(𝑡)) + 𝑤𝑎(𝑡);𝑥(𝑡0)                                 (23) 

𝑦 = ℎ𝑐((𝑡), 𝜃𝑏 , 𝑢(𝑡)) + 𝑣𝑎(𝑡)                                               (24) 

Where 𝑤𝑎(𝑡)~𝑁(0, 𝑄𝑎)  and 𝑣𝑎(𝑡)~𝑁(0, 𝑅𝑎)  are they are 

the independent and identically distributed Gaussian noises, 

The noise 𝑤𝑎(𝑡) represents the unknown modelling error in 

the SOC model (3) and polarization voltage model (4). 

Furthermore the process noise assumes that the state variables 

are not correlated one to another. Therefore the process noise 

covariance 𝑄𝑎 can be expressed as   

𝑄𝑎 = [
𝑄𝑠𝑜𝑐 0

0 𝑄𝑣𝑝
]                                                             (25) 

in which 𝑄𝑠𝑜𝑐  and 𝑄𝑣𝑝 (𝑉2) denote the variances of noise in 

the SOC and the polarization voltage, respectively. The 𝑅𝑎 

denotes the covariance of sensor noise.   Both 𝑤𝑎(𝑡)  and 

𝑣𝑎(𝑡) are treated as perturbations that bounded with known 

variance, of process and measurement model respectively. 

These statistical parameters  𝑄𝑎  and 𝑅𝑎  are uncertain, not 

known exactly when batteries are used for applications like 

EVs. Fig 5 shows a behavior of perturbed and unperturbed 

state (Fig 5c shows 𝑥2) and output variable (Fig. 5b show 

terminal voltage), and parameter (Fig 5d shows 𝑉𝑜𝑐)  of Li-S 

cell that generated from the ECN model when pulse current 

is applied, Fig 5a. 

 

III. EKF BASED SOC ESTIMATOR 

The EKF uses discrete state-space model. The discretized 

version of (23)-(24) is written as: 

𝑥𝑘+1 = f𝑑(𝑥𝑘 , 𝜃𝑏,𝑘, 𝐼𝐿,𝑘) + 𝑤𝑘                                              (27) 

𝑦𝑘 = ℎ𝑑(𝑥𝑘 , 𝜃𝑏,𝑘, 𝐼𝐿,𝑘) + 𝑣𝑘                                                (28) 

where 𝑘 is the sampling time index,  

 
 Fig.3  Characteristics of REVB’s Li-S cell to mixed-pulse current: 

(a)voltage; (b) current; (c) True SOC, 𝑥1; (d) True 𝑥2 ; (e).  𝑉𝑂𝐶(𝑥1); 

(f). 𝑅𝑂(𝑥1); (g). 𝑅𝑃(𝑥1); (h). 𝐶𝑃(𝑥1)..  

 
 Fig. 4. Zoomed a section of Voltage of Li-S  to the pulse current 

 
 Fig.5  Perturbation on Li-S cell model when pulse current is applied 

(a) pulse current; (b) terminal voltage with noise; (c) 𝑥2  ; (d).  

𝑉𝑂𝐶(𝑥1) 



f𝑑(𝑥𝑘 , 𝜃𝑘 , 𝐼𝐿,𝑘) = [
f𝑑,1(𝑥1,𝑘, 𝐼𝐿,𝑘)

f𝑑,2(𝑥𝑘 , , 𝜃𝑘 , 𝐼𝐿,𝑘)
] 

                          =     [
𝑥1,𝑘 −

𝛥𝑡∗𝐼𝐿,𝑘

3600∗𝑄𝑐𝑎𝑝

𝑥2,𝑘 −
𝛥𝑡∗𝑥2,𝑘

𝐶𝑃(𝑥1,k)𝑅𝑃(𝑥1,k)
+

𝛥𝑡∗𝐼𝐿,𝑘

𝐶𝑃(𝑥1,k)

], (29) 

h𝑑(𝑥𝑘 , 𝜃𝑘, 𝑢𝑘) = 𝑉𝑜𝑐(𝑥1,k) − 𝑥2,k − 𝑅𝑃(𝑥1,k)𝐼𝐿,𝑘 (30) 

𝑤𝑘  and 𝑣𝑘  are the process and measurement noise.. 𝛥𝑡  is 

sample time. 𝑥𝑘 = [
𝑥1,𝑘

𝑥2,𝑘
] and 𝐼𝐿,𝑘  are the discrete state and 

input same as the continuous model. The parameters of the 

discrete model are the same as the parameters of the 

continuous model. In the EKF, the following Jacobian 

matrices are used: 

𝐴𝑘 =
𝜕f𝑑(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝑥𝑘
= [

1 0
𝜕f𝑑,2(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝑥1,𝑘

𝜕f2,𝑘(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝑥2,𝑘

]                   (30)                          

  𝐵𝑘 =
𝜕f𝑑(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝐼𝐿,𝑘
= [

−
𝛥𝑡

3600∗𝑄𝑐𝑎𝑝

𝛥𝑡

𝐶𝑃(𝑥1,k)

]                                     (31) 

𝐶𝑘 =
𝜕h𝑑(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝑥𝑘
= [

𝜕ℎ𝑑(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝑥1,k
−1]                              (32) 

𝐷𝑘 =
𝜕h𝑑(𝑥𝑘,𝐼𝐿,𝑘)

𝜕𝐼𝐿,𝑘
= [−𝑅0(𝑥1,k)]                                       (33) 

The EKF algorithm includes five steps predicted state 

estimate, predicted covariance estimate, near-optimal 

Kalman gain calculation, state estimate update, and 

covariance of the state estimate. ‘-’ and ‘+’ at the top-right 

corner of each variable means before (prior) or after 

(posterior) the calculation [4]. Before the algorithm, the 

initial condition of the EKF algorithm is set as Eq. (33): 

𝑘 = 0 

�̂�0
+ = [

1
0

] 

𝑃0
+ = [

10 0
0 10

] (33) 

𝑘 in EKF is the step. �̂�𝑘
− and �̂�𝑘

+ are the prior and posterior 

state estimates. 𝑃𝑘
− and 𝑃𝑘

+ are the prior and posterior error 

covariances. 𝐾𝑘 is the Kalman gain. The EKF follows main 

steps: 

The predicted state estimate: 
�̂�𝑘

− = 𝐴𝑘−1�̂�𝑘−1 + 𝐵𝑘−1𝐼𝐿,𝑘−1 (34) 

The Predicted covariance estimate: 

𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1

+ 𝐴𝑘−1
𝑇 + 𝑄 (35) 

𝑄 is the process noise. 𝑄 is the same as ∆𝑓1 in SMO. 

Near-optimal Kalman gain calculation: 

𝐾𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇(𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅)−1 (36) 

𝑅 is the measurement noise. 𝑅 is the same as ∆𝑓3 in SMO. In 

the result section, both Q and R will be changed to test the 

robustness. 

 

State estimate update: 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘�̂�𝑘
− − 𝐷𝑘𝐼𝐿,𝑘) (37) 

The posterior states are estimated by Kalman gain, prior 

states and the measurement of terminal voltage 𝑦𝑘 . 

Covariance of the state estimate: 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘

− (38) 
After estimating covariance of the state, the five steps are 

finished, and a new loop will begin from (33) to (37). Finally, 
after all the data is processed, the loop finishes. 

 

IV. SMO BASED SOC ESTIMATOR 

Continuous-time state-space of Li-S discharge model (23)-

(24) is considered for design sliding mode observer based 

SOC estimator. is designed For designing the sliding-mode 

observer and simulate the noise or perturbations, an equation 

of terminal voltage with uncertainty is given: 

y(t) = 𝑉oc − 𝑥2(t) − 𝑉L + ∆𝑦                                          (39)      

Where 𝑉L = 𝑅𝑜𝐼𝐿 , and ∆y  is the bounded uncertainty of 

measurement, which is  equal to 𝑣𝑎(𝑡)  with known 

covariance 𝑅𝑎 . The time derivative for the SOC with an 

assuming uncertainty is: 

�̇�1 = −
𝐼L

3600𝑄cap

+ ∆𝑥1 (40) 

Where ∆𝑥1 is a bounded perturbation of the SOC, which is 

characterized as a Gaussian noise with known covariance 

𝑄𝑠𝑜𝑐 .  Having 𝑉L = 𝑅𝑜𝐼𝐿  and assuming no uncertainty in 

(39), the load current can be expressed as 

𝐼L =
𝑉oc−𝑥2(t)−y(t)

𝑅𝑜
                                                           (41)      

Substitution of (41) in (40) results the following first 

derivative of SOC : 

�̇�1(t) = −
𝑉oc − 𝑥2(t) − y(t)

3600𝑄cap𝑅o

+ ∆𝑥1

      = 𝑎1(y(t) + 𝑥2(t) − 𝑉oc) + ∆𝑥1 (42)

 

where 𝑎1 =
1

3600𝑄cap𝑅o
, and ∆𝑓1 is the bounded uncertainty 

of the capacity term. The polarization voltage is written as: 

�̇�2(t) =  
−1

𝐶p𝑅p

𝑥2(t) +
𝐼L

𝐶p

+ ∆𝑥2

          = −𝑎2𝑥2(t) + 𝑏1𝐼L + ∆𝑥2 (43)

 

which 𝑎2 =
1

𝐶p𝑅p
, 𝑏1 =

1

𝐶p
 , and ∆𝑥2 is the uncertainty of the 

polarization voltage, which is characterized by Gaussian 

noise with 𝑄𝑣𝑝.  

Now, let express dynamic response of measured battery 

terminal voltage by taking derivative of (39). Such first 

derivative output voltage can be expressed with bounded 

perturbation ∆ẏ as: 

ẏ (t) = �̇�𝑜𝑐 − �̇�2(t) −
𝑑

𝑑𝑡
(𝐼L𝑅o) + ∆ẏ                             (44) 

Considering a fast-sampling time the derivative of the 

terminal voltage 𝑦 (t)  to the load current is negligible 

(
∆V𝐿(t)

∆𝐼L
≈ 0). Therefore, the (14) can be expressed as 

�̇� (t) = −
𝐼L

3600𝑄cap
+

1

𝐶p𝑅p
𝑥2(t) −

𝐼L

𝐶p
+ ∆�̇�                     (45)      

Substitution of 𝑥2(t) = 𝑉oc − y(t) − 𝐼L𝑅o in (45) results  

�̇� (t) = −
𝐼L

3600𝑄cap
+

𝑉oc−𝑦(𝑡)−𝐼L𝑅o

𝐶p𝑅p
−

𝐼L

𝐶p
+ ∆�̇�                  

         = −𝑎2𝑦(𝑡) + 𝑎2𝑉oc − 𝑏2𝐼L + ∆ẏ                                    (46) 

where 𝑏2 =
1

3600𝑄cap
+

1

𝐶p
+

𝑅o

𝐶p𝑅p
. since the observability 

matrix is full rank, the state vector can be estimated.  

     To estimate the terminal voltage (46), the SMO uses the 

following model: 

�̇̂�  = −𝑎2�̂� + 𝑎2�̂�𝑜𝑐 − 𝑏2𝐼L + 𝐿1𝑠𝑔𝑛(𝑦(t) − �̂�)                (47) 

where 𝐿1 is a positive gain of the terminal voltage SMO, the 

�̂� and �̂�𝑜𝑐  are the estimations of 𝑦(𝑡) and 𝑉oc. After defining 

the error as 𝑒𝐿 = (𝑦(t) − �̂�), the error dynamic equation of 

the terminal voltage can be expressed as: 

𝑒�̇�(t) = −𝑎2𝑒𝐿(t) + 𝑎2(𝑉𝑜𝑐 − �̂�𝑜𝑐) + ∆�̇� − 𝐿1𝑠𝑔𝑛(𝑒L(𝑡))  (48) This work under grants European commission grant 814471e, 

and  the Aerospace Technology Institute (ATI) and Innovate UK 

TS/P003818/1 and TS/R013780/1, respectively. 



where  

𝑠𝑔𝑛(𝑒L(𝑡)) = {
1,

−1,
𝑒L(t)>0
𝑒L(t)<0

                                                (49) 

It is assumed that the gain 𝐿1 satisfies an inequality  

 𝐿1 > |𝑎2(𝑉𝑜𝑐 − �̂�𝑜𝑐) + ∆�̇�|        (50) 

The following Lyapunov function can be used to prove the 

error convergence: 

 V(e(t))=
1

2
𝑒𝐿

2(𝑡).                                           (51) 

In this work, the gain 𝐿1  for considered Li-S cell’s terminal 

voltage estimation is determined by   

𝐿1 > |𝑎2(𝑉𝑜𝑐 − �̂�𝑜𝑐) + ∆�̇�| ≈ |∆�̇�| + 0.035                     (52) 

This is according to the 𝑉𝑜𝑐  given in black solid-line of Fig. 

2, perturbation in the measurement, and the maximum 𝑎2 is 

0.09842 by calculating the 
1

𝐶p𝑅p
. When estimation of terminal 

voltage reaches the sliding surface, 𝑒L̇  and 𝑒L  reaches to 0. 

According to the equivalent control method, i.e., 
𝐿1

𝑎2
𝑠𝑔𝑛(𝑒𝐿) 

is replaced by {
𝐿1

𝑎2
𝑠𝑔𝑛(𝑒𝐿)}

𝑒𝑞
, the (52) can be written as an 

equivalent function as : 

𝑉oc − �̂�𝑜𝑐 = {
𝐿1

𝑎2
𝑠𝑔𝑛(𝑒𝐿)}

𝑒𝑞
 .       (53) 

The sliding mode observer model of  �̂�1(𝑡) is written as : 

�̇̂�1  = 𝑎1(�̂� + �̂�2 − 𝑉oĉ) + 𝐿2𝑠𝑔𝑛(𝑒1)       (54) 

Where 𝑒1 = 𝑥1 − �̂�1  is an error between actual SOC and 

estimated SOC �̂�1 . An error dynamic of SMO for �̂�1 

estimation is written as  

�̇�1  = 𝑎1 (𝑒𝐿 + 𝑒2 − (𝑉oc − �̂�𝑜𝑐)) + ∆𝑥1 − 𝐿2𝑠𝑔𝑛(𝑒1)     (54) 

Where 𝑒2 = (𝑥2 − 𝑥2̂). It is assume that the error between the 

actual 𝑉oc and �̂�𝑜𝑐  is an piecewise linear to 𝑒1, hence it takes  

𝑉oc − �̂�𝑜𝑐 ≈ 𝑚𝑒1          (55) 

where 𝑚 is a positive gain that evolved the slope of 𝑉oc over 

SOC. Having (55) the (54) results  

�̇�1  = 𝑎1(𝑒𝐿 + 𝑒2 − 𝑚𝑒1) + ∆𝑥1 − 𝐿2𝑠𝑔𝑛(𝑒1)                (56) 

Similarly, the SMO model of  

�̇̂�2  = −𝑎2𝑥2̂+𝑏1𝐼L + +∆𝑥2 + 𝐿3𝑠𝑔𝑛(𝑒2)                              (57) 

Having a relation between three error terms 

𝑒2 = {
𝐿2

𝑎1
𝑠𝑔𝑛(𝑒1)} = [

𝐿2

𝑎1
𝑠𝑔𝑛 ({

𝐿1

𝑚𝑎2
𝑠𝑔𝑛(𝑒𝐿)}

𝑒𝑞
)]

𝑒𝑞

   ,   (58) 

the SMO model (57) results 

�̇̂�2  = −𝑎2𝑥2̂+𝑏1𝐼L 

          +𝐿3𝑠𝑔𝑛 ([
𝐿2

𝑎1
𝑠𝑔𝑛 ({

𝐿1

𝑚𝑎2
𝑠𝑔𝑛(𝑒𝐿)}

𝑒𝑞
)]

𝑒𝑞

)           (59)     

For considered SOC problem, the SMO converges to the 

conditions 𝐿2 > |∆𝑥1| and 𝐿3 > |∆𝑥2| 

V. SIMULATION RESULTS AND DISCUSSIONS 

This section presents simulation results of SMO based Li-
S cell SOC estimation. Simulation has performed under two 
different ECN model conditions and two different load 
conditions.  Having constant current, simulation demonstrates 
the performance of Li-S cell SOC estimators under 
conventional load condition. To demonstrate performance of 
estimators under dynamic load condition, the mixed-
amplitude current is considered. 

 Firstly, performance of SMO is studied under 
deterministic model and two different load conditions; 
constant and mixed-amplitude load current. For both load 

condition the SMO performs well when model is deterministic 
and it result is not presented here due to page limit. But result 
of deterministic model based SMO is much better and 
accurate than the perturbed model.  

Secondly, performance of SMO for model with Q-
uncertainty is studied and compared it to the EKF under two 
load conditions.  

A. Constant Load Current 

The current is constant, but added with a random noisy as 
Fig 6a, which is actual measured current of NASA data set [2]. 
For this input load current, the Li-S cell’s output voltage is 
generated from ECN model (28). Fig 6b shows measured 
voltage when measurement noise is set to 𝑅𝑎 = 0.00001𝑉2  
In this case, the perturbation in the model is set to be 
𝑄𝑠𝑜𝑐=0.0000003 and 𝑄𝑣𝑝 = 0.1𝑉2.   

The SMO and EKF use the measured voltage and input 
current, and estimate the SOC of Li-S battery. The subplot of 
Fig 6c compares the estimated SOC and true SOC. In Fig 6c, 
the black dotted, red solid line and blue dashed lines denote 
true SOC, EKF and SMO, respectively. This comparison plot 
exhibits that the performance of SMO as close as the true SOC 
from the beginning (100 percent SOC) to the depletion state 
(zero percent SOC), whereas the EKF does not. After 25 
percent of the SOC the EKF diverges from the true SOC and 
is an unstable. Fig 6d shows the error in estimation by both 
EKF and SMO. The error of SMO is less than five percent 
through the discharge. On contrast to the SMO, the error of 
EKF is more than five percent in the discharging range 25 to 
zero percent though the EKF’s error is less than five percent  
from 100 percent SOC to until 25.    

  

 
 Fig.6  Results when load is constant: (a)voltage; (b) current; 
(b) voltage; (c) SOC estimated Vs true SOC (d) absolute 
error SMO vs EKF  



B. Mixed-Amplitude Pulse Load Current 

This subsection illustrates the performance of both SMO 
and EKF based SOC estimation of Li-S batteries when mixed 
–amplitude current is applied. On top of that, the model 
perturbation is set to be 𝑄𝑠𝑜𝑐 =0.00001 and 𝑄𝑣𝑝 =
0.00001𝑉2. Like previous case, the measurement noise is set 
to 𝑅𝑎 = 0.00001𝑉2 .  Fig 7a and Fig 7b show the dynamic 
current and voltage of Li-S respectively. 

Like constant current case, the SMO converges through 
the 100 percent SOC to zero percent, but the EKF starts 
diverges from beginning of the low-plateau around 73 percent 
SOC. Fig 7c illustrates the response of SMO and EKF when 
applied dynamic current. The red solid-line moves away from 
the true SOC, which is black dotted-line of Fig 7c. The red 
solid-line of Fig 7d shows that the absolute error by EKF is 
slowly increasing in low-plateau region because the poorly- 
observable low-plateau region. But the error by SMO is less 
than five percent in both high- and low-plateau.    

 

VI. CONCLUSIONS AND FUTURE WORKS 

After addressing modelling complexity, a sliding mode 
observer has been designed for SOC estimation of discharging 
Lithium-Sulfur battery cell under constant and mixed-pulse 
dynamic current. Thus, a literature gap on SMO based Li-S 
battery SOC estimation is fulfilled. The performance between 
SMO and conventional EKF has been compared. The SMO is 
much robust than the EKF when the model is heavily 
perturbed. The absolute error between estimated and true SOC 
is used to measure the accuracy of estimators. The SMO’s 
error in accuracy is five percent through, whereas the EKF did 
not for considered dynamic load and perturbed Li-S battery 
model. Therefore the SMO based SOC estimator is highly 

recommended for the Li-S batteries that have Q-uncertainty. 
The future works include a study on robustness against initial 
SOC uncertainty and a design of dual SMO for state of health 
estimation of Li-S batteries.   
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