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a b s t r a c t   

Engineering systems are growing in complexity, requiring increasingly intelligent and flexible methods to 
account for and predict uncertainties in service. This paper presents a framework for dynamic uncertainty 
prediction under limited data (UPLD). Spatial geometry is incorporated with LSTM networks to enable real- 
time multistep prediction of quantitative and qualitative uncertainty over time. Validation is achieved 
through two case studies. Results demonstrate robust prediction of trends in limited and dynamic un
certainty data with parallel determination of geometric symmetry at each time unit. Future work is re
commended to explore alternative network architectures suited to limited data scenarios. 
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Introduction 

The growing complexity in engineering systems manifests a 
range of uncertainty surrounding in-service maintenance. Such 
systems are comprised of various equipment units, many of which 
are maintained on a corrective or time-based basis. Unexpected 
failures outside planned maintenance periods require reactive 
maintenance to repair or replace units. Sampling rates of main
tenance data in this context are often sporadic due to manual re
cording methods and disjointed signals from equipment units. The 
resulting quality and availability of data, as well as the influence of 
expert experience, assumptions, and environmental operating con
ditions, drive uncertainty that increases the likelihood of under or 
overestimating factors such as turnaround times, equipment avail
ability and resulting costs [1–3]. This can lead to increased failure 
rates or, more often, unnecessary maintenance carried out. Un
certainty in this industrial context is defined as the difference be
tween the degree of information required and information held to 
make a decision concerning a given entity. As well as deviations in 
quantitative, recorded data, this definition encompasses information 
sourced from qualitative, subjective opinions, assumptions and en
vironmental factors. The resulting risk is the impact the uncertainty 
will have on the given entity [4–6]. Accommodating for uncertainty 
requires the determination of key contributors, their influence on 
interconnected units how this might change over time. 

Limited available or poor-quality data directly hinders forecast 
accuracy and robustness. This paper focuses on time-series data. 
Once quantified, predictions of the uncertainty in such data and 
assumptions made surrounding it can enhance decision-making 
capabilities for the maintenance of increasingly complex systems 
and equipment units. This sets the motivation of the paper, which 
presents a framework to predict dynamic uncertainty under limited 
available data. The framework is designed to be embedded in a range 
of systems such as engines, radar, and heating systems as well as 
uncertainty in associated maintenance costs. The aim is not to mi
tigate or reduce the uncertainty, but to provide a holistic view as to 
which factors require mitigation or may become an issue in the 
future. 

Supporting literature covering emerging techniques to forecast 
uncertainty for increasingly complex systems is given in Section 
“Supporting literature”. The framework structure is detailed in 
Section “Framework overview: Uncertainty prediction under limited 
data (UPLD)”, along with key mathematical formulae and assump
tions made. Section “Framework implementation and results” ap
plies the framework to two use cases: US SAR cost uncertainty data 
and simulated turbofan engine degradation. Results of each step are 
given to illustrate the multistep prediction for each long-short term 
memory (LSTM) network allocation. Section “Discussion” discusses 
the strengths and limitations of each step of the framework, while 
Section “Conclusions and future work” summarises the study along 
with future work in this area. 

https://doi.org/10.1016/j.cirpj.2022.01.002 
1755-5817/© 2022   

]]]] 
]]]]]] 

⁎ Corresponding author. 
E-mail address: a.h.grenyer@cranfield.ac.uk (A. Grenyer). 

CIRP Journal of Manufacturing Science and Technology 37 (2022) xxx–xxx 

http://www.sciencedirect.com/science/journal/17555817
www.elsevier.com/locate/cirpj
https://doi.org/10.1016/j.cirpj.2022.01.002
https://doi.org/10.1016/j.cirpj.2022.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirpj.2022.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirpj.2022.01.002&domain=pdf
mailto:a.h.grenyer@cranfield.ac.uk
https://doi.org/10.1016/j.cirpj.2022.01.002


Supporting literature 

Uncertainty manifestation with growing complexity in engineering 
systems 

Engineering systems are growing in complexity, consisting of 
numerous equipment units interacting in a linear or non-linear 
manner, with a collective behaviour distinct from and not often 
determined by that of individual units [7–10]. Applied in the en
gineering domain, these are termed complex engineering systems 
(CES). The level of uncertainty increases with growing complexity. 
Accurate depiction of turnaround times, equipment availability and 
resulting costs for optimum maintenance therefore become in
creasingly complicated and uncertain [9,11,12]. The level of un
certainty can change throughout the in-service life. This calls for 
adaptive and intelligent approaches to forecast uncertainty based on 
a combination of available data and expert opinion [10]. 

An overwhelming issue in the forecasting of equipment states 
and related maintenance is the quality and availability of data  
[12–16]. To make accurate and robust predictions, a degree of his
toric data is required. Where this does not exist, the solution is 
generally to model the physical system and obtain data through si
mulation. As systems grow in complexity, robust and dependable 
models are harder and more expensive to produce [12,17]. In the CES 
context, sampling rates are rarely consistent and feature a highly 
variable number of signals from different system units [15]. It then 
falls to subjective opinions and assumptions of experts—designers 
and manufacturers—to determine when maintenance will be re
quired, equipment needed, time scales and resulting costs. This 
naturally places a large degree of uncertainty on the accuracy and 
robustness of such predictions, which must be quantified and con
sidered when performing forecasts. A forecast is the determination 
of future outcomes based on historic and new data (Bayesian), while 
a prediction is an indication of a future event with or without prior 
information [18,19]. 

Multistep forecasting methodologies 

Three prominent areas that have seen advancements in fore
casting capability in recent years for uncertainty consideration are 
remaining useful life (RUL) prediction [12,17,20], cost estimation  
[2,21–24] and meteorology [25]. RUL prediction is a central task for 
maintenance practices of CES [26]. There are a myriad of RUL pre
diction approaches, notably reviewed by Lei et al. [12]. While the 
theory, general implementation and evaluation metrics of many 
approaches are open source, several industries have developed their 
own protected approaches for their specific requirements. Un
certainty is a significant point of vulnerability in long-term RUL 
predictions. Bayesian filtering algorithms are typically applied, the 
most prominent of which are Kalman filters; only suitable for linear 
systems and variations thereof for non-linear systems [12]. A more 
flexible algorithm is the particle filter, designed for use with non
linear systems, which has become a widely used method for per
forming real-time uncertainty assessment of RUL predictions  
[12,20,27,28]. 

Another key forecasting approach is deep learning, which makes 
use of neural networks (NNs) to learn from existing data. 
Applications are covered in detail for RUL prediction by Lei et al. [12] 
and for uncertainty forecasting by Grenyer et al. [10]. NNs are 
composed of multiple layers, allowing them to learn complex non- 
linear relationships. Bayesian deep learning (BDL) and variations 
thereof have been widely applied to forecast future events given 
existing data and update when presented with new data [29–37]. 
Deep learning models are only as accurate as the data they are 
trained on and, as such, typically require large datasets with defined 
trends over time [37]. They must therefore be flexible to consider all 

data properties necessary to achieve robust predictions. Flexible 
models can make better predictions, but all predictions involve as
sumptions that manifest uncertainty [10,29,37]. Naturally, the 
structure of NNs and training options applied have a significant 
impact on prediction accuracy and robustness for specific applica
tions [12]. Determination of parameters that result in minimal pre
diction error can be achieved through hyperparameter tuning, often 
performed via a grid search technique [26,38]. Modification of deep 
learning models as more data becomes available can make im
plementation more complex and require extensive computation 
time [25,36,38]. 

This issue can be mitigated in part by dropout training, applied 
by Gal [36] in a method to approximate Bayesian inference in 
Gaussian processes (GPs) in deep neural networks and more gen
erally by Cicuttin et al. [39] and Srivastava et al. [38]. GPs are highly 
flexible non-parametric models widely used for regression and 
classification, growing in complexity in line with the density of 
training data [29,37,40,41]. Defined as a layer within the network 
structure, dropout randomly sets input sequences below a defined 
probability to zero. This alters the underlying network structure for 
each iteration to prevent overfitting [36,39]. The uncertainty as
sessed by Gal [36] was in the deep learning process itself, not the 
resulting uncertainty interval It was highlighted that the use of 
distributions other than normal in Gaussian processes will result in 
different uncertainty estimates, the use of which may trade-off un
certainty quality with computational complexity [10,42]. These 
methods still require enough prior data of sufficient quantity and 
quality to fulfil the Central Limit Theorem, where the normalised 
sum of variables will tend towards a normal distribution  
[6,12,21,22,43]. 

Recurrent neural networks (RNNs) are a form of NN with a 
feedback loop to better capture non-linear relationships. Long short- 
term memory (LSTM) networks are a type of RNN increasingly used 
in sequential time-series forecasting and RUL prediction, the theory 
of which is widely covered in literature [17,26,44–46]. A key ad
vantage of LSTMs over other types of NN is their ability to use gates 
to avoid vanishing or exploding gradients, increasing prediction ac
curacy [17,44,46]. Wu et al. [26] applied a vanilla LSTM model to 
predict RUL and identify physical degradation mechanisms, the 
parameters of which were defined through hyperparameter tuning. 
Shi and Chehade [17] proposed a Dual-LSTM framework to predict 
uncertain change points from which degradation accelerates and 
heath indexes that can be used to determine RUL in real-time. Both 
studies were compared with and found to outperform benchmark 
methods. A common trait among the examined publications is the 
use of a turbofan engine degradation dataset to test and demonstrate 
RUL prediction with proposed methodologies [17,26,45,47–49]. Fur
ther applications of this dataset are examined and ranked by Ra
masso [50]. Different approaches to account for uncertainty in the 
datasets are also covered—the most popular being probability 
theory. The turbofan engine degradation dataset is also used in this 
study—detailed in Section “Case study 2: Turbofan engine de
gradation”. 

Uncertainty in cost estimation is largely examined in the context 
of product-service systems (PSS) [2,10,13,21–24]. Multiple equip
ment uncertainties arise in this context including reliability, avail
ability, and maintainability. Smart [19] applied Bayes’ Theorem to 
estimate costs from trends with minimal data points. Existing data 
and assumptions were combined with limited real-time data to 
produce accurate forecasts with a degree of confidence. Schwabe 
et al. [21] devised an approach focusing on the topology and sym
metry of variance data given by its geometric shape at the time of 
estimation. This was initially driven by the idea that most statistical 
conclusions obtained arithmetically can also be achieved by geo
metry, which can additionally simplify otherwise complex conclu
sions [21,51]. Rather than interdependencies between individual 
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Fig. 1. UPLD framework overview.  
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data points, spatial geometry describes the behaviour of a space 
created by connecting outlying data points, represented in vector 
space in a point cloud around an origin, forming a regular cyclical 
polygon. A shape with greater symmetry requires less information to 
be described. A positive correlation was therefore hypothesised be
tween symmetry and information entropy. The symmetry of the 
space created by each input dimension (cost variances) was able to 
predict future development without requiring significant volumes of 
data [21,22]. 

Research gaps 

The quality and availability of data is the greatest driver of un
certainty in the forecasting of equipment states, RUL, and determi
nation of when and how maintenance should be carried out. 
Growing complexity in engineering systems makes precise model
ling of physical systems harder and more expensive to produce in 
order to obtain reliable simulated data [12,17]. Inconsistent data 
sampling from system units coupled with subjective assumptions 
made place a significant degree of uncertainty on predictions con
cerning the maintenance of such systems. 

RUL prediction is a key determinate for maintenance scheduling 
and costing in CES [12,26]. Sensor-fed or manually recorded time 
series data is typically translated into a health index, the methods for 
which are dependent on the application [17,49,52,53]. Variants of 
RNN are widely used to predict RUL for CES, many using the C- 
MAPSS dataset. However, these methods still require sufficient data 
with which to train networks to make accurate and robust predic
tions. This also limits the robustness of probabilistic methods such 
as BDL [37]. Initial training parameters can be set by hyperparameter 
tuning to determine settings that result in minimal prediction error. 
This can require significant computation time when comparing 
multiple training options and network structures [46]. It is therefore 
not suitable for regular updates to the network when new data be
comes available but can provide an effective starting point to make 
initial predictions. Dropout training can help improve the robustness 
of predictions by preventing overfitting for each input parameter, as 
well as updating the LSTM state at each prediction step as more data 
becomes available over time. 

Uncertainty manifested under limited data and assumptions as 
discussed above should be forecast to allow decision-makers to plan 
with greater confidence. Doing so will prevent under or over esti
mation of factors such as equipment availability and cost, in
corporating complex and non-complex factors. Uncertainties that 
may pose an undesirable risk at a given point in time can be miti
gated to reduce the likelihood of unforeseen costs and delays [10]. 
Predictions need to be robust and as accurate as possible despite 
being produced under limited data where traditional probabilistic 
methods are not applicable. 

The critical research gap is therefore summarised as a lack of 
approaches to predict uncertainty in engineering systems with 
complex and non-complex entities under limited data [10], and to do 
this without the need to produce complicated and expensive models 
of physical systems. LSTMs can make flexible forecasts based on 
prior data and update when new data becomes available. Spatial 
geometry offers a novel approach to predict uncertainty under 
limited data, though not yet applied outside of cost estimation. A 
combination of LSTMs with spatial geometry is seen as the best 
methodology to fill the research gap as it will enable robust un
certainty prediction under limited data, updating predictions as new 
data becomes available over time. Other approaches reviewed in this 
section are not suited to limited data scenarios as they rely on prior 
data sufficient to fulfil the Central Limit Theorem. The need to fill 
this gap is growing as data volumes and variability increase with 
system complexity. 

Framework overview: uncertainty prediction under limited 
data (UPLD) 

This paper contributes a framework for dynamic uncertainty 
prediction under limited data (UPLD). Spatial geometry is combined 
with LSTMs to enable covariant analysis of dynamic variables within 
state space, whereby a change in one variable will affect another. For 
each time step of the input sequence, the network learns to predict 
the value of the next time step. This work builds on a conceptual 
model presented in Grenyer et al. [42]. Here it is further developed 
and validated through two case studies. The steps were developed 
from emerging studies in literature utilising LSTM networks to 
forecast time-series data, extended to consider the geometric sym
metry between input variances to improve prediction robustness 
under limited data. This addresses the research gap above and is 
achieved through a 5-step framework developed in MATLAB, de
scribed below and illustrated in Fig. 1. 

Step 1. Evaluate input topology. To examine interactions, un
certainties and knock-on effects within the system, its topology 
must first be defined. Input uncertainty data is given as a time series 
of changing variance, formatted as row vectors where each column 
represents one time unit. The number of rows gives the number of 
input dimensions. The variance data is scaled according to the range 
of each input dimension i over each time slice j by Eq. (1), where n is 
the number of input dimensions. Under limited data a robust stan
dard deviation cannot be applied, making traditional standardisation 
methods with mean and standard deviation undesirable [21]. 

= +dScaled
data dMin

dRange n n
· 1

1 1
i j

i j i

i
,

.

(1) 

Where: =dScaled scaled dataset; =data initial dataset; 
=dMin minimum value of each input over the time series; 

=dRange range of each input over the time series. 
The scaled variance data is split into training and test data ac

cording to a defined partition. The default partition is set to 60% to 
allow for a comparable proportion of observed and predicted values 
to determine prediction accuracy and robustness with varying input 
dimensions. The number of training steps is given by Eq. (2). 

=nStepsTrain P nStepsTotal· (2) 

Where: =P Partition; =nStepsTrain Number of training steps; 
=nStepsTotal Total number of time steps. 

The input to be forecast is the scaled training data. The forecast 
data is then compared against the test data to determine prediction 
error. In parallel, the symmetry and aggregate vectors are calculated 
for the training, test and predicted data, detailed in the next step, 
and compared in the same manner. The LSTM networks then take 
the next time step, update the network state and corresponding 
prediction. 

Step 2. Calculate input geometry, symmetry, and aggregate 
vectors. Spatial geometry determines an uncertainty range based on 
the geometric symmetry between input variances for each available 
time unit via polar force-field analysis in vector space. The proce
dures in this step to calculate symmetry and vector coordinates are 
based on previous work by Schwabe et al. [21]. Symmetry is defined 
as the relationship between the actual shape area of the evaluated 
time slice and the maximum possible area from the created geo
metry, illustrated in Fig. 2 by an example time slice with six input 
dimensions [21]. For each calculation in this step, the radial degree 
between each input vector and their input order (dimensional se
quence) is kept constant [54]. 

Coordinate data points for vertices of the actual area shape are 
given by the scaled input variances for each time slice. The space 
between each vector dimension (D) out from the origin is a triangle 
(six in Fig. 2). The sum of each triangle’s area gives the full actual 
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shape area. This is calculated by Eq. (3), where ai and bi are the re
spective magnitudes of each vector that make up the triangle sides 
and rad is the radial degree. The sum of the outer face lengths then 
gives the shape perimeter, calculated by Eq. (4). 

=
=

Area a b rad
1
2

· · · sin( )Act
i

n

i i
1 (3)  

= +
=

Perimeter a b a b rad2( · )·cos( )Act
i

n

i i i i
1

2 2

(4)  

The reference shape perimeter is calculated by the mean of the 
outer face lengths multiplied by the number of input dimensions. 
This creates a regular polygon, for which the apothem (line from 
centre to midpoint of each side) is given by Eq. (5). This is then used 
to calculate the reference shape vertex magnitude (Eq. (6)), which in 
turn is used to calculate the reference shape area (Eq. (7)). The 
symmetry between the actual and reference shape areas is then 
calculated by Eq. (8) [21]. Spatial geometry uses a ring topology, 
analysing the linear progression of symmetry. There is a positive 
correlation between the percent change in the cumulative increase 
of actual area and symmetry. The correlation factor for each time 
slice can be used to determine an uncertainty metric against the 
baseline estimate. This is the most likely or best guess value of the 
data point from which the input variance is obtained, explored fur
ther in Section “Framework implementation and results”. 

=Apothem FaceLength
FaceLength

4Ref Ref
Ref2
2

(5)  

= +Vertex Apothem
FaceLength

2Ref Ref
Ref2

2

(6)  

=Area n Vertex sin rad
1
2

· · · ( )Ref Ref
2

(7)  

=Symmetry
Area
Area

Act

Ref (8)  

To plot the change in shape geometry over time, X and Y end 
vector coordinates for each dimension, i over the time period, j are 
obtained by Eq. (9), iterated through each radial degree around the 
unit circle [42]. The sum of these points identifies the aggregate 
vector (Eq. (10)), whose magnitude is given by Eq. (11). 

= =absEndX cos rad dScaled absEndY sin rad dScaled( )· ( )·i j i j i j i j, , , , (9)  

= =
= =

aggVectX absEndX aggVectY absEndYj
i

n

i j
i

n

i
1 1 (10)  

= +aggVectMag aggVectX aggVectYj j j
2 2

(11)  

The aggregate vector magnitude and degree are assumed to re
present the source of greatest uncertainty for each time slice. The 
resulting plots for each time unit are stacked to illustrate a dynamic 
change in the uncertainty of each input and aggregated vectors over 
time. An example illustration is given in Fig. 3 for six input dimen
sions, with aggregate vectors removed for illustrative purposes. 

Step 3. Allocate inputs to respective networks and train with 
optimal initial architecture. While some inputs are relatively con
stant, others can vary significantly over the time series. The mix of 
dynamic and comparatively constant trends on a single network 
limits that network’s ability to accurately and robustly forecast fu
ture time steps. To reduce under or over estimation, training is split 
across three networks with different architectures and initial 
training options. Different parameters are applied for different 
ranges of data according to the relation of the coefficient of variation 
(CV) of the scaled data to the first and second quantiles of each input 
dimension. CV is a dimensionless measure of relative variability, 
given by the ratio of the standard deviation to the mean [55,56]. This 
is illustrated in Fig. 4, with the networks hence referred to as “LSTM 
networks”. 

Fig. 2. Spatial geometry actual vs. reference shape area example.  

Fig. 3. Stacked plot example [42].  

Fig. 4. LSTM network allocation according to input parameters.  
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Each network has a variable structure and range of training op
tions to best suit the variability in the data applied to it. The best of 
these, i.e., the combination that gives the lowest prediction error, is 
determined through hyperparameter tuning according to the mean 
absolute percentage error (MAPE), discussed further in Step 5. As 
shown in Fig. 5, the variable structure for each network consists of 
1–3 LSTM layers, each with 100–250 hidden units, a rectified linear 
unit (ReLU) layer, dropout layer (50–90%) and a regression output 
layer. Increasing the number of LSTM layers can make predictions 
more robust but also increases computation time [46]. The ReLU 
layer simply sets any value less than zero to zero, avoiding the 
vanishing gradient problem found in tanh and sigmoid functions  
[39,40]. The dropout layer then sets input sequences below a defined 
probability to zero to prevent overfitting [36,39]. The fully connected 
layers compile all neurons in the previous layer to a defined output 
size. The final regression output layer computes the half-mean- 
squared-error loss of the output. 

The range of training options compared by hyperparameter 
tuning is denoted in Table 1. Three solvers are compared: Adaptive 
moment estimation (Adam), Stochastic gradient descent with mo
mentum (SGDM) and root mean square propagation (RMS prop). 
Each of these are variations of gradient descent algorithms that 
update network parameters (weights and biases) to minimise pre
diction error by taking steps towards the negative gradient of the 
loss function [17,39,44]. The number of epochs is the number of full 
passes over the training data. The learning rate controls the changes 
made to the model for every epoch. 

The optimal network structure and training options can be found 
by two methods: an exhaustive grid search, comparing every pos
sible combination with set interval ranges for the parameters, or by 
Bayesian optimisation, where the software selectively alters a spe
cified range of hyperparameters to minimise or maximise a selected 
evaluation metric. The three LSTM networks are then trained se
quentially using the optimal hyperparameters. 

Step 4. Forecast uncertainties over specified time period. The 
scaled variance data is forecast using the trained networks from the 
partition to the end of the initial dataset. Initial predictions are made 
using the last time step of the training response. When making 
predictions using standardised data (according to mean and devia
tion) the same training data parameters are used for the test (ob
served) data [17,42]. Therefore, this approach uses the same range 
and minimum parameters from the training data to compare ob
served data against predicted data. The corresponding symmetry 
and aggregate vectors are calculated in parallel by Step 2 and com
pared in the same manner. The network state is updated to use 

observed values at each step in place of the predicted values to in
crease robustness [42]. The observed and predicted data is then 
plotted in vector space, stacked for each time slice. 

Step 5. Evaluate model performance. Prediction error between 
the observed Oi and predicted Pi uncertainty can be attributed to the 
model parameters, unexpected changes in the inputs (causing no 
clear trend) and the amount of data available. Prior to performance 
evaluation, all variables are rescaled up to their original values by 
rearranging Eq. (1), using the initial range and min. parameters, 
given by Eq. (12). Common evaluation metrics are root-mean-square 
error (RMSE) (Eq. (13)), mean absolute percentage error (MAPE) 
(Eq. (14)) and custom score functions. RMSE is widely used in RUL 
prediction and regression problems. MAPE is a widely applied eva
luation metric to determine forecast accuracy and robustness, pro
viding a distinct percentage evaluation. 

= +
( )

data
dScaled

dRange dMin
1

·i j
i j n

n

i i,
,

1

1
(12)  

= =RSME
P O

n

( )i
n

i i1
2

(13)  

=
=

MAPE
O P

O
1
n

·
i

n
i i

i1 (14)  

As new data is recorded, the framework loops back to Step 1 to 
reassess the input topology and feeds through to performance eva
luation. 

Framework implementation and results 

Case study 1: US SAR data 

The initial spatial geometry approach utilised US Department of 
Defense Air Force Selected Acquisition Report (SAR) summary tables 
to test and validate the method [21,54]. This is made up of a mixture 
of summary cost data over various phases of product life cycles in 
aerospace, land and sea sectors. Cost variances used were considered 
significant enough to require monitoring by stakeholders [21]. The 
same dataset is applied here to provide comparable consistency in 
the application and demonstrate the wide applicability of the fra
mework. 

Step 1. Evaluate input topology. Annual cost variances in US $ 
Mil are given over the life cycle of a range of US Air Force military 
platforms for a 28-year period from 1986 to 2013. Further detail is 
given by Schwabe et al. [21,54]. The data is categorised into 6 cost 
variance factors and formatted as absolute integers as [42]: 

Quantity: Change in the number of units of an end item of 
equipment. 

Schedule: Change in procurement or delivery schedule, comple
tion date, development, or production milestone. 

Engineering: Alterations to physical or functional characteristics 
of a system. 

Fig. 5. Hyperparameter setup metrics: network structure.  

Table 1 
Hyperparameter setup metrics: training options.    

Training options Value range  

Solver Adam, SGDM, RMS prop 
Max. Epochs 150–250 
Initial learn rate 0.005–0.01 
Learn rate drop factor 0.1–0.5 
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Estimating: Correction of previous estimating errors or refine
ments of current estimates. 

Other: Unforeseeable events not covered in any other category 
(e.g., natural disaster or strike). 

Support: Cost changes for support equipment of major hardware 
items not included in other costs. 

Step 2. Calculate input geometry, symmetry, and vector co
ordinates. Following Eqs. (2)–(8), the resulting change in the actual 
area, reference area and symmetry over time is illustrated in Fig. 6. 
Initial observations can be made here to highlight the reduction in 
symmetry through to 2005, indicating an increase in the amount of 
information required to describe the shape. From here, the sym
metry fluctuates up to the end of the observed period. 

The cumulative increase of actual area and symmetry gave a 
linear trend for the observed period. The percent change for this 
increase between each unit is plotted in Fig. 7a. This displays a ne
gative exponential trend with a correlation coefficient of 0.95 
(Fig. 7b). 

The gradient and intercept values from the actual area and 
symmetry trend line equations were plugged in for 100 time units. 
Their correlation factor, given by the actualArea symmetry/ is illu
strated in Fig. 8 with an R2 value of 1. The shaded area shows the 
region of available data given by the 28 time units. 

An interesting phenomenon occurs when taking a linear trend 
line from Fig. 7(a) and calculating the correlation factor in the same 
manner (Fig. 9) where a lognormal relationship is displayed. The 
asymptote where Y = 1 appears to meet the x-axis just prior to 

where the available data ends. The reasons for this warrant further 
investigation but are out of scope for this study. 

Next, the X and Y end vector coordinates are calculated for each 
input dimension over the 28-year time period. The resulting end
points and aggregated vectors for each input dimension are stacked 
and plotted in Fig. 10. The dynamic shape area is shown in Fig. 10a by 
the white lines and blue fill between each vector coordinate. The 

Fig. 6. SAR data: (a) Change in actual and reference shape area over time and (b) change in symmetry.  

Fig. 7. SAR data: (a) Percent change for cumulative increase and (b) correlation matrix.  

Fig. 8. SAR data: Actual vs. symmetry correlation factor for exponential trend.  
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aggregate vector magnitude in Fig. 10b is visualised by the end 
marker, scaled up 40x for illustration. It can be seen here that the 
estimating factor prompts the greatest variance over the analysed 
period. It should also be noted that the radial degree between each 
input dimension is kept constant – in this case 1.0472 radians (60°). 
The apparent difference between e.g., Quantity-Schedule and Sche
dule-Engineering is due to the scaling of the figure produced in 
MATLAB. 

Step 3. Allocate inputs to respective networks and train with 
optimal initial architecture. The range and deviation of each input 
used to train the network varies significantly. Using the CV as the 
deterministic parameter allows inputs with higher variation to be 
trained separately from those with lower deviation. Summary sta
tistics are illustrated in Fig. 11 and categorised into the relevant 
LSTM networks according to Fig. 4. 

For the training data, this fits the Engineering factor into the first 
network, Quantity, Schedule, Estimating and Support into the second 
and Other into the third. Hyperparameters were filtered through 
Bayesian optimisation to minimise the resulting average MAPE be
tween inputs for the respective networks, using defined ranges (e.g., 
100–250 hidden units). A maximum sweep time of 2 h was set, 
which gave approximately 200 runs. The resulting initial network 

structure is illustrated in Fig. 12. The optimal initial network training 
options are given in Table 2. For all three networks, the learning rate 
schedule was set to ‘Piecewise’ and gradient threshold to 1. 

Step 4. Forecast uncertainties over specified time period. 
Initial predictions made using the trained networks are shown in  
Fig. 13a, where the solid lines are the training data for each input 
dimension (partitioned at 60% of the full dataset), the dashed lines 
are the predictions, and the thin dotted lines are the actual (ob
served) data for the test period. After resetting the network state, 
predictions were updated for each time step accounting for the 
previous step in Fig. 13b. Following the updated prediction, it was 
observed that values for the Estimating factor now lie within the 
observed range. More detail in the prediction error can be seen in  
Fig. 15. 

The corresponding symmetry, aggregate vectors and stacked 
vector plot built in Step 2 were calculated and updated in Table 3 and  
Fig. 14. The percentage difference between the observed and pre
dicted symmetry and aggregate vector magnitudes over the test 
period is directly influenced by the prediction error for each input 
dimension. Significant percentage difference in the aggregate vector 
magnitude for years 25 and 26 is due to the change in shape area, 
illustrated in the stacked 3D plot. Initial training data was removed 
for the illustration. Due to the significant difference in variance 

Fig. 9. SAR data: Actual vs. symmetry correlation factor if assuming linear trend in 
cumulative % increase. 

Fig. 10. SAR data: (a) Stacked vector 3D plot and (b) face-on with aggregated vectors over 28-year period.  

Fig. 11. SAR data: Summary statistics for each input and corresponding LSTM network 
allocation. 
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magnitude of the Estimating factor to all other factors, the aggregate 
vector direction is relatively unchanged other than in years 25 and 
26. Further evaluation is made in the final step. 

Step 5. Evaluate model performance. The difference in the ob
served and predicted data is illustrated in Fig. 15, scaled back up to 
the original variances, with corresponding line and stem plots for 
each input dimension. The stem plots show the difference in the 
observed to predicted data. Prediction error is noticeably variable 
over the time period for each of the six input dimensions. This is due 

to the quantity of data on which the networks were trained and the 
unpredictable peaks and troughs in the observed data. For example, 
the Schedule factor (Fig. 15b) is underestimated but the overall 
downward trend is picked up in the prediction. The observed data of 
the Engineering and Estimating factors (Fig. 15c,d) is scaled to 
1.0 × 104 US $Mil. The relatively constant variance from year 20 to 
year 23 is accurately predicted, but the sudden increase was not 
predictable in the training data. As the model updated the multistep 
prediction, the increasing trend was identified up to year 28. Simi
larly, the Estimating factor (Fig. 15d) was able to predict the overall 
downward trend in the test data period but not the sudden changes 
in variance. 

The MAPE and RMSE are calculated in Table 4. The lowest MAPE 
was observed in the Engineering factor due to low prediction error in 
year 20 to year 23 and the following positive trend. While the esti
mating factor appears to hold the trend of the observed data, the 
scale of the variance means it has the highest MAPE and RMSE. The 

Fig. 12. SAR data: LSTM network input allocation and structure following hyperparameter tuning.  

Table 2 
SAR data: defined training options following hyperparameter tuning.      

Training options LSTM 1 LSTM 2 LSTM 3  

Solver SGDM Adam Adam 
Max. Epochs 235 200 130 
Initial Learn Rate 0.003 0.002 0.002 
Learn rate drop factor 0.14 0.11 0.10 

Fig. 13. SAR data: Observed vs. predicted uncertainty for (a) initial forecast and (b) updated forecast.  
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Other factor holds constant up to year 23 before an unexpected dive, 
which the network was not able to account for in the prediction. 
These sudden changes and the scale in the observed variance data 
directly impact the mean prediction error, causing the high variation 
in MAPE and RMSE over the test period. While the predictions 
cannot be considered accurate, the ability to reflect the observed 
trends despite outliers in the observed data allows predictions to be 
deemed robust [57]. 

Case study 2: turbofan engine degradation 

As discussed in Section “Supporting literature”, a number of 
studies have applied a turbofan engine degradation dataset to 
forecast RUL using LSTMs, as well as other areas of prognostics and 
health management (PHM) [17,26,45,48,50,58]. Simulated using the 
Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) 
tool, this publicly available dataset consists of four degradation 
scenarios. The FD001 training set was selected for this study because 
it consists of a range of quantitative data measured by sensors and 
qualitative factors given as noise. Uncertainties in the data and as
sumptions made were calculated by dividing the data into sub-ar
rays. The resulting uncertainty data over 16 time cycles was applied 
to the framework to further demonstrate the capability to predict 
uncertainty under limited data. 

Step 1. Evaluate input topology. The initial dataset consisted of 
21 sensors measuring temperature, pressure and speed for 100 en
gine units, each with a random start time and normal operating 

level, running to failure. Previous studies using this dataset dis
counted any uniform sensor data as these will not change in any 
forecasts made or contribute to the uncertainty. The same approach 
is applied here, as well as discounting parameters whose individual 
uncertainty has a minimal impact on the aggregated uncertainty or 
overall forecast. A description of the resulting 10 input dimensions 
forecast is given in Table 5. As for the SAR data case study, a partition 
of 60% was applied to split the training and test data, which was then 
scaled according to the range of the training data. The C-MAPSS 
dataset does consist of defined training and test sensor data for RUL 
prediction. The focus of this study is to forecast the uncertainty of 
that data, where there is limited previous data on which to base 
predictions. Using the training set from the database was therefore 
deemed sufficient. 

Step 2. Calculate input geometry, symmetry, and vector co
ordinates. The actual and reference shape areas and resulting 
symmetry over time are illustrated in Fig. 16, given by Eqs. (2)–(8). 
For the 16 cycles observed, a trend cannot be identified for the shape 
areas or symmetry. As for the SAR data, the percent change for the 
cumulative increase in actual area and symmetry shows a negative 
exponential trend (Fig. 17a) with a highly significant correlation 
coefficient of 0.97 (Fig. 17b). 

Following the line equations given by the actual area and sym
metry, the correlation factor over 100 units given by the 
actualArea symmetry/ is illustrated in Fig. 18 with an R2 value of 1. The 
same asymptote trait occurred as for the SAR data when calculating 
the correlation factor assuming a linear trend line, occurring where 

Table 3 
SAR data: observed vs. predicted symmetry and aggregate vectors.            

Symmetry Aggregate vector magnitude 

Time Observed Predicted Diff. % Diff. Observed Predicted Diff. % Diff.   

18  81.44  87.71  6.27  7%  0.51  0.65  0.14  24%  
19  76.35  71.30  5.05  7%  0.34  0.65  0.31  62%  
20  64.47  60.25  4.23  7%  0.59  0.66  0.07  11%  
21  53.23  60.66  7.43  13%  0.67  0.65  0.03  4%  
22  62.47  65.30  2.82  4%  0.38  0.61  0.23  47%  
23  55.55  74.49  18.94  29%  0.45  0.55  0.10  21%  
24  71.55  88.60  17.05  21%  0.30  0.49  0.20  50%  
25  76.11  97.51  21.40  25%  0.03  0.48  0.45  177%  
26  80.37  80.68  0.31  0%  0.02  0.55  0.53  185%  
27  54.18  42.64  11.54  24%  0.49  0.66  0.17  29%  
28  72.53  27.33  45.20  91%  0.34  0.77  0.43  78%    

Fig. 14. SAR data: Stacked 3D vector plot including observed and predicted data.  
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the available data ends. The 16 time units signify uncertainty in the 
data up to engine failure. This plot is purely illustrative to expand the 
decreasing correlation factor. A key difference here to the SAR data is 
the opposite (negative) trend. As the variation and corresponding 
uncertainty in the sensor data increases up to failure, the relation of 
the geometric shape area to its symmetry reduces. 

The coordinate endpoints and aggregated vectors over the 16 
time cycles for each input dimension are stacked and plotted in  
Fig. 19. The shape area is starkly different here compared to the SAR 
data. This is due not only to the four additional input dimensions but 
also the contrast in variability between the dimensions about the 
radial degree (0.63 radians, 36°). The aggregate vector magnitude in  

Fig. 10b is scaled up 10x for illustration and tend towards the low- 
pressure turbine inlet temperature (S4). 

Step 3. Allocate inputs to respective networks and train with 
optimal initial architecture. The variation in the uncertainty data is 
illustrated in the summary statistics in Fig. 20. Categorised by Fig. 4 
according to the respective CV, the majority of dimensions fell into 
LSTM network 3. The turbine core speed (S9) was placed in LSTM 1 
and the high-pressure turbine coolant bleed (S20) in LSTM 2. The 
hyperparameter ranges applied to identify the optimal initial net
work structure are the same limits as for the SAR data, trained using 
Bayesian optimisation for the same maximum of 2 h. The resulting 
structure is summarised by Fig. 21 and training options in Table 6. 
For all three networks, the learning rate schedule was set to Piece
wise and gradient threshold to 1. 

Step 4. Forecast uncertainties over specified time period. 
Initial predictions made using the trained networks are shown in  
Fig. 22a. As for the SAR data, the solid lines are the training data, 
dashed lines are the predictions and thin dotted lines are the ob
served data for the test period. Fig. 22b shows the predictions after 
updating for each time step to account for the previous step. 
Changes in the predicted values are examined in Step 5. While not 
immediately noticeable in the plots, a reduction is noted in S3 (blue) 
from time cycle 12, a reduction in the negative gradient in S20 (or
ange) and a constant period in S7 between cycles 13 and 14. 

The corresponding symmetry and aggregate vectors from Step 2 
are compared in Table 7 for each time step and through the stacked 
vector plot in Fig. 23. The large difference in symmetry for time 
cycles 13 and 14 is due to the exploding gradients within the net
works, which a higher dropout percentage could avoid. However, 
when tested at 80% rather than 50% the networks were found to give 
a constant line as the prediction. Further testing of combinations and 
degrees of dropout layers may alleviate the errors within the LSTM. 

The stacked vector plot demonstrates this further (initial training 
data was removed for the illustration). Notable differences in the 
observed and predicted data can be seen where the grey shape area 

Fig. 15. SAR data: Observed vs. predicted variance over the test period for each input dimension (a–f).  

Table 4 
SAR data: MAPE and RMSE of observed vs. predicted values over the test period.     

Input MAPE RMSE  

Quantity  140%  2003 
Schedule  92%  3834 
Engineering  64%  8363 
Estimating  867%  17,110 
Other  381%  208 
Support  248%  4200 

Table 5 
C-MAPSS data: description of input dimensions to be forecast [58].     

Sensor number Notation Description  

3 T30 Total temperature at HPC inlet 
4 T50 Total temperature at LPT inlet 
7 P30 Total pressure at HPC outlet 
9 Nc Physical core speed 
11 Ps30 Static pressure at HPC outlet 
12 Phi Ratio of fuel flow to Ps30 
14 NRc Corrected core speed 
15 BPR Bypass ratio 
20 W31 HPT coolant bleed 
– – Process noise 
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(observed) is not covered by the red area (predicted). Caused mainly 
by S4, S9 and S14, these errors alter the resulting symmetry and 
corresponding aggregate vector magnitude and direction towards 
different factors. 

Step 5. Evaluate model performance. The difference in the re
scaled observed and predicted data is illustrated in Fig. 24 in the line 
and stem plots for each input dimension. The significant prediction 
error for a number of factors is most likely due to the very limited 
number of steps on which it was trained and the lack of defined 
trends. Development of the network allocation methodology or in
clusion of additional networks to train further variabilities in the 
data may improve robustness in the prediction. As for the previous 
case study, the multistep prediction was not able to pick up sudden 
changes in the variance data. Variances considered here are mag
nitudes smaller than those used in the previous case study and 
propagated over a smaller time period. 

The tracing of overall positive or negative trends in the test data 
where they are apparent, such as for S7 (Fig. 24c), S14 (g) and S15 
(h), and predicting within the range boundaries of the observed data 
is therefore considered a satisfactory result. This case study illus
trates the pitfalls of making predictions based on very limited data. 
The MAPE and RMSE over the observed period for each input di
mension are given in Table 8. The range and scale of variances are 
comparatively small against the SAR data in Section “Case study 1: 
US SAR data”, which is where the MAPE demonstrates the ability to 
better compare the prediction errors. Large variation in prediction 
error is due to unpredictable changes in the data. This naturally 

drives up the prediction error, as seen in time cycle 14 in S4 
(Fig. 24b). Even if the remainder of the test period has a very low 
prediction error, that increased error will increase the overall MAPE. 
As for Section “Case study 1: US SAR data”, predictions are robust as 
they reflect observed trends despite outliers and limited data on 
which to train [57]. 

Fig. 16. C-MAPSS data: (a) Change in actual and reference shape area over time and (b) change in symmetry.  

Fig. 17. C-MAPSS data: (a) Percent change for cumulative increase and (b) correlation matrix.  

Fig. 18. C-MAPSS data: Actual vs. symmetry correlation factor for exponential trend.  
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Discussion 

The following paragraphs critique the framework steps through 
the results of the two case studies, concluding with an examination 
of industrial applications. Input uncertainty data for both case stu
dies were given as a time series of variances, formatted as row 
vectors. The use of case studies in distinct domains demonstrated 
the framework’s flexibility to be embedded in different systems. The 
data was scaled according to the range of each input dimension. As 
stated in Section “Framework overview: Uncertainty prediction 
under limited data (UPLD)”, the number of time steps available 
under limited data is unlikely to provide a robust deviation measure 
required for traditional standardisation methods. The scaling equa
tion (Eq. (1)) can theoretically be applied to any format of data such 
as standard deviation or raw sensor data. The useability and results 
of using such formats in the framework have not been explored and 
may warrant further investigation. 

The scaled data was split into training and test data according to 
a defined partition, set to 60% to provide a comparable proportion of 
observed and predicted values to determine robustness of predic
tions. A lower partition would reduce the amount of data on which 
to train the networks, leading to reduced robustness, while an in
creased partition would reduce the data on which to test and update 
the networks and make predictions beyond the available time 
period. Comparisons with a varying partition would be beneficial for 

cases with a larger forecastable period, though up to a point the 
available data may no longer be considered “limited” and more 
traditional statistical approaches can come into play. Even when 
working with “big data”, parametrics and statistics must be treated 
with caution prior to validation when significant correlations are 
unknown. 

Spatial geometry was used as the uncertainty descriptor because 
of its ability to propagate interdependent cost uncertainties under 
limited data. Connecting outlying data points in vector space formed 
geometric shapes for each time slice, the area of which was used to 
determine the symmetrical relationship between inputs. This en
abled a simplification of what may otherwise be complex conclu
sions [21,51]. The greater the symmetry, the greater the information 
entropy and therefore representative uncertainty for a given time 
slice. Symmetry and respective vector coordinates were calculated in 
Step 2 of the framework and run in parallel with Step 4 as un
certainties were predicted through the LSTM. The aggregated vectors 
for each time slice illustrated the greatest source of uncertainty and 
gave an indication of shape change for the next time interval, 
stacked in a point cloud in 3D space. 

The visualisation provided an immersive view of shape change 
over time as well as the source of greatest uncertainty via the ag
gregated vector. These uncertainties require the most attention; be it 
mitigation, exploitation or simply increased awareness [42]. Em
ployment of the ‘shape’ of data through spatial geometry for fore
casting against the correlation of individual data points is a 
significant novelty in the developing field of big data analysis. Live 
and continuous forecasts are beneficial to industry in several areas 
including maintenance planning and digital twins in the face of 
mounting increases in technological complexity. 

To calculate the symmetry and aggregate vectors and build the 
3D visualisation, defined parameters had to be fixed while others 
were allowed to change over time. Summarised in Table 9, key fixed 
parameters were the radial degree and dimensional sequence of 
inputs, while changeable parameters included the vector co
ordinates of each dimension over time. Altering the sequence of 
input dimensions would change the magnitude and direction of the 
aggregate vector but should maintain the shape area. Adding a new 
input dimension part-way into the space will alter the radial degree 
and require rescaling of the full dataset. Repercussions and allow
ances for altering fixed parameters warrant further research for 
spatial geometry. 

Fig. 19. C-MAPSS data: Stacked vector 3D plot and face-on with aggregated vectors over 16 time units.  

Fig. 20. C-MAPSS data: Summary statistics for each input and corresponding LSTM 
network allocation. 
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The third step allocated the scaled inputs to one of three net
works according to their coefficient of variation (CV) over the time 
period, then used hyperparameter tuning to define the optimal in
itial network structure and training options to yield robust predic
tions. The CV was used as the deterministic measure for network 
allocation because it provides a dimensionless measure of relative 
variability. 

Alternative measures such as the mean are affected by outliers, 
while the mode and standard deviation are not suitable for small 

sets of data. Other methods to define bins in which to allocate input 
dimensions should be explored, such as interquartile range, and 
variable allocation methods based on the amount of available data 
and respective variability. The allocation of input dimensions to the 
three networks for UPLD has a significant effect on the robustness of 
resulting predictions, making this one of the most important steps of 
the framework. 

The allocation approach is similar to the semi-double-loop 
learning concept proposed by Putnik et al. [59]. This was used to 
select the best learning models for predictive maintenance sce
narios. This method could prove effective in further development of 
the UPLD framework, where the application of double-loop learning 
principles in reinforcement learning would be used to help allocate 
input parameters and define initial network architecture. 

Initial parameters for the adaptable network architecture were 
defined through hyperparameter tuning. For both case studies, 
Bayesian optimisation was used to minimise the MAPE by comparing 

Fig. 21. C-MAPSS data: LSTM network input allocation and structure following hyperparameter tuning.  

Table 6 
C-MAPSS data: defined training options following hyperparameter tuning.      

Training options LSTM 1 LSTM 2 LSTM 3  

Solver Adam Adam Adam 
Max. Epochs 220 180 120 
Initial Learn Rate 0.009 0.009 0.021 
Learn rate drop factor 0.23 0.061 0.138 

Fig. 22. C-MAPSS data: Observed vs. predicted uncertainty for (a) initial forecast and (b) updated forecast.  
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a defined range of parameters. Experiments were run for a max
imum of 2 h for each network. This computation time is not viable 
for regular updates when new data becomes available so was only 
used to gain an optimal initial setup. This does not necessarily give 
the best possible initial setup as not every combination can be tested 
with the time frame. An exhaustive grid search comparing each 
parameter iteration would not be viable without extensive com
puting power. 

The defined ranges for training options and network structure are 
detailed in Section “Framework overview: Uncertainty prediction 
under limited data (UPLD)”. Different combinations will generate 
different results. Additional LSTM layers will typically improve 
prediction accuracy but take longer to train. The hidden units of each 
LSTM layer are equal. Comparisons of different sizes in each layer 
and additional training options such as mini-batch size may improve 
results with reduced computation time. The final output layer of 
each network was a regression layer. Regression typically relies on 
statistical data sufficient to fulfil the Central Limit Theorem. Under 
limited data scenarios, this is not the case without artificial propa
gation through Monte Carlo simulation [42,43,60]. This may there
fore lead to reduced robustness in predictions based on the available 
training data. Alternative, custom output layers should be explored 
to provide more robust predictions. 

Uncertainty was predicted in Step 4 using the trained networks. 
The symmetry and individual and aggregate vectors were calculated 
for the predicted data via Step 2 running in parallel with the LSTMs. 
It is important to note the distinction of the forecast direction where 
the LSTMs forecast through the time axis, while the symmetry and 
aggregate vectors are calculated for each predicted time unit. 
Predictions were rescaled to the original input variances and plotted 

to illustrate the difference in the observed and forecast uncertainty. 
The dropout layer prevented overfitting for each input parameter, 
but when set too high resulted in near-constant predicted values. 
The multistep model updated predictions as new data was fed in. 
The initial, observed and predicted data were plotted in the stacked 
3D vector space. These plots provided an immersive view of the 
shape area through time as well the aggregate vector magnitude and 
direction. However, the visualisation can become chaotic when too 
many parameters are visualised at once. Further developments will 
therefore allow selected parameters to be visualised and removed, as 
well as value labels and altering the shape area fill transparency. 

The fifth and final step of the framework evaluated model per
formance via the MAPE and RMSE. Other evaluation metrics such as 
custom scoring functions should be developed to gauge the quality 
of uncertainty prediction and develop a methodology to identify 
areas where more data is required to allow comprehensive decisions 
to be made concerning equipment availability, turnaround time and 
unforeseen costs through the system life cycle. 

The pertinence of the framework was discussed with key per
sonnel from a leading defence company in 4 h of semi-structured 
interviews. A large degree of uncertainty is portioned to numerous 
data repositories, maintenance formats and failure modes for dif
ferent platforms. Sampling rates of maintenance data from different 
systems can have unpredictable gaps and varying sampling rates. 
The quality of signal reconstruction and determination of opera
tional defects is used to determine when maintenance will be re
quired. Rates of degradation or identification of other failure modes 
it is not always achievable. It was agreed that continuous forecasting 
of uncertainties resulting from these traits is vital to facilitate de
pendable maintenance costing and ensure equipment availability. 

Table 7 
C-MAPSS data: observed vs. predicted symmetry and aggregate vector magnitude.            

Symmetry Aggregate vector magnitude 

Time Observed Predicted Diff. % Diff. Observed Predicted Diff. % Diff.   

11  141.67  149.23  7.56  5%  1.28  0.33  0.95  118%  
12  155.55  196.87  41.32  23%  0.83  0.40  0.42  69%  
13  98.38  165.01  66.63  51%  0.75  0.56  0.19  29%  
14  53.42  124.97  71.56  80%  1.10  0.78  0.32  34%  
15  103.93  101.93  2.01  2%  1.27  0.87  0.40  37%  
16  191.93  149.66  42.27  25%  0.74  0.86  0.12  15% 

Fig. 23. C-MAPSS data: Stacked 3D vector plot for observed and predicted data.  
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Further work towards implementation is discussed at the end of the 
next section. 

A direct comparison of the UPLD framework with traditional, 
probabilistic forecasting methods such as regression is not suitable 
because they are designed for large volumes of data that fulfil the 
Central Limit Theorem (as stated above and in Section “Research 
gaps”). Such models aim to forecast statistical data, not the un
certainty in that data and surrounding qualitative factors. They are 
therefore not appropriate under limited data scenarios. 

A comparison of the percentage difference in symmetry given by 
predicted variables over the test period of case study 2 against that 

observed is therefore plotted in Fig. 25. The results from Tables 7 and 8 
using UPLD are plotted against predictions made by linear regression 
and exponential smoothing, using the training data from case study 2. 
Predictions were also updated (upd) as in the UPLD framework by 
including the data of the previous time step for each iteration. The 
symmetry for the resulting predictions was calculated according to 
Step 2 of the UPLD framework to provide comparative data. The per
centage difference given by the UPLD LSTM gives the lowest 

Fig. 24. C-MAPSS data: Observed vs. predicted variance over test period for each input dimension (a–j).  

Table 8 
C-MAPSS data: MAPE and RMSE of observed vs. predicted values over test period.     

Input MAPE RMSE  

S3 (T30)  23%  12.52 
S4 (T50)  70%  0.00 
S7 (P30)  30%  2.43 
S9 (Nc)  46%  0.01 
S11 (Ps30)  26%  7.25 
S12 (Phi)  20%  0.09 
S14 (NRc)  40%  0.01 
S15 (BPR)  16%  0.02 
S20 (W31)  20%  3.30 
ProcssNoise  314%  0.12 

Table 9 
Spatial geometry taxonomy for fixed and changeable parameters.     

Fixed parameters Translation space Changeable parameters (over time)   

• Scaling equation for all input dimensions  

• Shape area calculation  

• Symmetry calculation  

• Radial degree between inputs  

• Dimensional sequence of inputs  

• Origin location  

• Layout/plotting functions for visualisation  

• Computational complexity  
• Input dimension vector coordinates  

• Shape area  

• Symmetry  

• Aggregate vector direction and magnitude  

• Forecast most likely variance 

Fig. 25. Forecast method comparison – percentage difference of observed and pre
dicted symmetry. 
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percentage difference to the observed data, thus outperforming the 
other methods. 

Conclusions and future work 

This paper presented a framework to predict dynamic un
certainty exhibited under limited data (UPLD) for the maintenance 
of increasingly complex engineering systems. These uncertainties 
arise as a result of data quality and availability, operating conditions 
and assumptions made surrounding maintenance. Coded in 
MATLAB, the framework was designed to be embedded in a variety 
of systems, building on supporting literature to develop a flexible 
forecasting model capable of making predictions under limited data 
from complex and non-complex factors without the need to develop 
precise models of physical systems. LSTMs were applied in parallel 
with spatial geometry to predict uncertainty in time-series data 
through the geometric symmetry between input dimensions. 
Additional benefits include the ability to update uncertainty pre
dictions as new data becomes available by comparing initial pre
dictions against the observed data and projecting forecasts through 
the visualisation of polar force fields in 3D vector space. This allows 
factors that may require future mitigation to be identified, which 
can, in turn, reduce under or over estimation of turnaround times, 
equipment availability and resulting costs. 

The framework was applied to two case studies in different 
contexts: Annual cost variances for a range of US Air Force military 
platforms (SAR data) [21,54] and precalculated uncertainties from a 
turbofan engine degradation simulation (C-MAPSS data) [50,58]. The 
SAR data consisted of six input dimensions with a widespread of 
variances over a 28-year period. 

The C-MAPSS data consisted of 10 dimensions made up of sensor 
data and process noise, with variances precalculated for 16 time 
cycles, determined initially from raw sensor data for RUL prediction  
[58]. Section “Supporting literature” highlighted the wide use of 
LSTMs for RUL prediction, for which many studies use the C-MAPSS 
dataset. While the study does not use the dataset directly, findings 
on uncertainty in sensor and noise data will impact the determi
nation of the acceptable range on which decisions are made when 
planning maintenance for related systems. 

Key findings of this research were: 
Employment of the ‘shape’ of data to describe uncertainty by the 

geometric symmetry between inputs for each point in time provided 
discernible information to determine and predict equipment health 
under limited data. 

Allocation of inputs to one of three networks according to their 
variation enabled improved definition of initial network architecture 
and more robust predictions. 

As technological complexity grows, live and continuous forecasts 
of uncertainty manifested by data quality and availability are of great 
benefit to industry. 

Core contributions of the UPLD framework are:  

1. Robust prediction of uncertainty under limited data 
2. Adaptable allocation of inputs to networks with variable struc

ture and training options 
3. Initial technique for immersive visualisation of dynamic un

certainties and shape change with an indication of magnitude 
and direction of the greatest contributing factor 

The authors propose future work to simulate and interpolate 
input data to fill gaps in signal data. Implications of altering fixed 
parameters within spatial geometry merit further research. The 
impact of changing the dimensional sequence of inputs (input order 
around the origin) for each time unit to a variable rather than a 
constant parameter is being investigated. Prediction robustness from 
the LSTM networks may be improved by exploring alternatives to 

the regression output layer. alternative evaluation metrics such as 
custom scoring functions should be developed to gauge prediction 
quality and identify where additional data is required. 

In terms of implementation, the framework enables forecasting 
under limited data, though prediction robustness is highly depen
dent on the LSTM network architecture each respective input di
mension is assigned to. Further development of the approach should 
explore implementation in real-time applications to receive live 
equipment data to update predictions to ultimately provide un
certainty predictions on factors such as RUL. The interoperability of 
such implementation will depend on data sampling rates, compu
tational processing times and varying environmental and human 
factors [10,61,62]. Development of the visualisation for applications 
in AR will enhance useability and allow the user to access additional 
state information for a given point in time. In addition, suitable 
approaches to mitigate, tolerate or exploit uncertainty through deep 
learning according to the magnitude should be explored. 
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