Highly efficient X-ray generation in high intensity laser-solid simulations

S. Morris (sjm630@york.ac.uk), C. Ridgers

Introduction

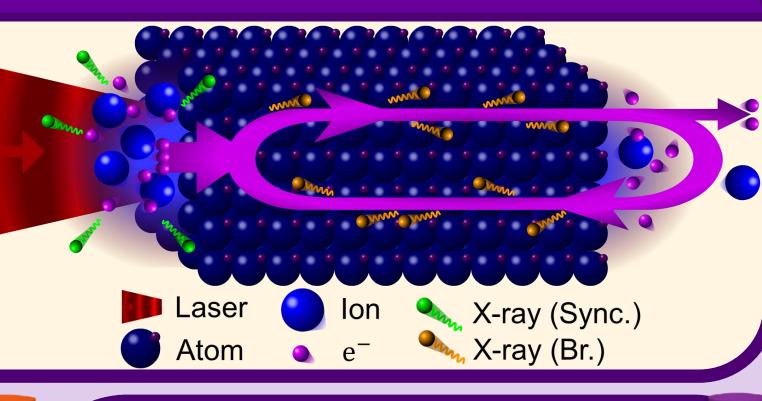
- X-rays can be used to scan for special nuclear materials, and can also transmute nuclear waste into medical isotopes.
- When a petawatt-class laser strikes a solid, the surface is heated into a plasma and hot electrons (e⁻) are injected into the target, where they produce X-rays (bremsstrahlung).
- Finding the e⁻ energy to X-ray conversion efficiency $\eta_{e\to v}$ is complicated by competing energy-loss mechanisms. What fraction of injected e energy becomes hard X-rays?

Bremsstrahlung

- e⁻ accelerating in the electric fields of the target nuclei can lose energy through Xray emission
- Stopping power (SI units):

$$\frac{dE}{dx} \approx -0.3m_e n_i Z^2 E \ln\left(\frac{192}{Z^{1/3}}\right)$$

Scales with atomic number squared Z^2 , e^- energy *E*, and ion number density, n_i



Full talk

 $\mathbf{I0}$.

Es. Re

Ionisation energy loss

- e⁻ lose energy in non-radiative collisions with target atoms. Energy is transferred to heating the solid [1]
- Stopping power (SI units):

Br.

Fi

$$\frac{dE}{dx} \approx -10^{-26} \frac{Zn_i}{v^2} \left(\ln\left(\frac{E_k}{I_{ex}}\right) + f(\gamma) \right)$$

• Scales with e⁻ speed v, and target Z, n_i . Varies with the mean excitation energy, I_{ex}

Fig. 1. Many processes compete for the same hot e⁻ energy. The bremsstrahlung (Br.) efficiency also depends on the energy lost to: ionisation (Io.), fields (Fi.), refluxing (Re.) and escaping (Es.) e⁻. Here Es. is different, as only the highest energy e⁻ escape. The rest are trapped by sheath fields, losing energy to the other processes until all energy is lost.

Fi.

Re.

Hybrid-PIC code

10.

Br.

- Extension to EPOCH PIC code
- Macro-electrons based on laser parameters are injected into the solid
- The field solver assumes the presence of a resistive return current [1]
- e⁻ undergo *Br*. and *Io*. as they move
- Energy lost to the solid raises the temperature of the local cell, updating η

Resistive fields

The hot e⁻ current draws a resistive return current. This generates electric fields which slow hot e⁻, and heat the target through Ohmic heating [1]

- Stopping power (SI units): $\frac{dE}{dx} \approx -e\eta J$
- Scales with resistivity η , and hot e⁻ current density *J*

Reflux and escape

- As e⁻ leave the solid, they set up sheath fields. High energy e⁻ escape, but the rest reflux with some energy loss and scatter
- Behaviour modelled in 2D-PIC (EPOCH) simulations, up to 700 fs simulation time:
 - Escape energy*: $2a_0m_ec^2$

10⁻¹

10⁻²

10⁻³

- Mean reflux momentum loss: $0.0027a_0m_ec$
- Mean reflux scatter range: 23°

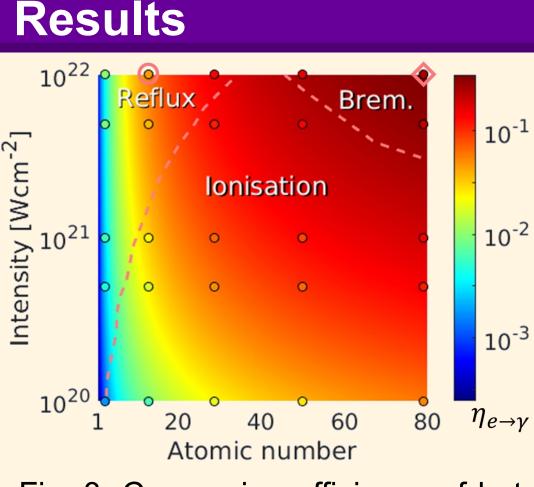


Fig. 3. Conversion efficiency of hot e⁻ energy into X-rays over 1 MeV

- Pink diamond shows the peak electron efficiency: 25%
- Pink circle shows AI at 10²² Wcm^{-2} . We find laser to X-ray efficiency 0.014, while PIC simulations [2,3] suggest values between $(0.4-8) \times 10^{-5}$
- PIC codes underestimate the emission as they simulate shorter time-scales

Empirical reflux boundaries used

github.com/Status-Mirror/epoch

Simulation setup

- We ran 3D simulations for many target materials and laser intensities, *I* to find $\eta_{e \rightarrow v}$
- Laser: 40 fs pulse, 5 µm spot size
- Run for 10-100 ps to capture the full emission

10¹² -CH 100³µm³ -Al 100³µm³ -Cu 100³µm³ -Cu 50³µm³ - 10¹⁰ Au 100³µm³ 10⁸ 10⁶ 100 50 150 Time [ps] Fig. 2. X-ray emission rates

. S

dE/dt

2 10²⁰ Intensity [Wcm Br. **I**o. Fi. Re. Es. 10^{22} AI Au Target Fig. 4. Pie charts showing energy fraction lost to each process

- Br. dominates high Z high I, Io. dominates most Z at low I
- Monte Carlo (MC) codes don't model Re. or Fi. losses, and will overestimate the emission
- At high I, low Z, Br. and Io. are too weak to slow e⁻, so e⁻ hit more boundaries and Re. dominates. MC codes would be very poor here.

This work was in part funded by EP/M018156/1. Simulations were run on the Viking cluster at the University of York. Supported by AWE co-supervisors G. Crow and N. Sircombe (now at Arm Ltd).

References: [1] Davies, J.R., 2002. *Phys. Rev. E*, 65(2), p.026407. [2] Vyskočil, J., 2018. PPCF, 60(5), p.054013. [3] Wan, F., 2017. *Eur. Phys. J. D*, 71(9), pp.1-8.