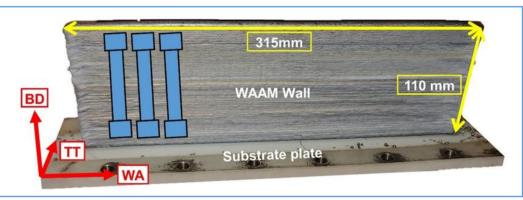
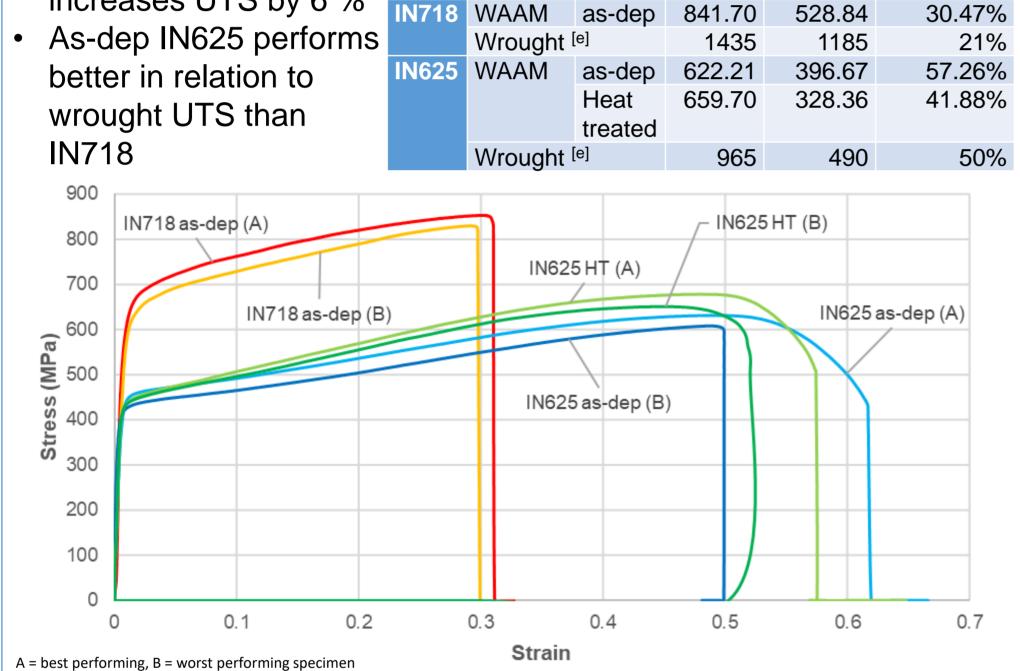


Microstructure and mechanical properties of Inconel 718 & 625 produced through the WAAM process

INTRODUCTION

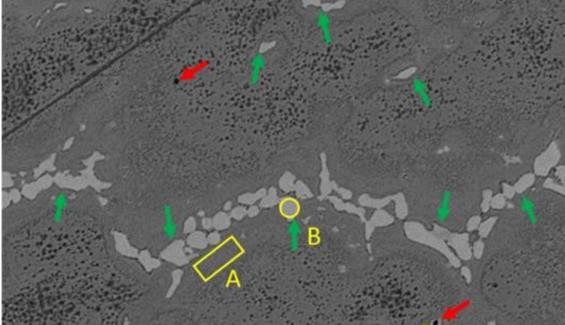
- Wire + Arc Additive Manufacturing (WAAM) is the combination of an electric arc as a heat source and wire as a feedstock.
- For this project, a plasma arc welding process was combined with Inconel 718 (IN718) and Inconel 625 (IN625) wire and was used to deposit wall structures in a layer-by-layer process.
- The key difference between welded components and the WAAM system is the thermal profile of as-deposited WAAM components.
- Objectives:
 - To investigate room-temperature (RT) mechanical properties of IN718 & IN625 and as-deposited (as-dep) microstructure.
- To investigate microstructure and mechanical properties of heattreated IN625 at RT.
- To analyse performance of as-dep and heat-treated variant compared to maximum achievable from wrought data.

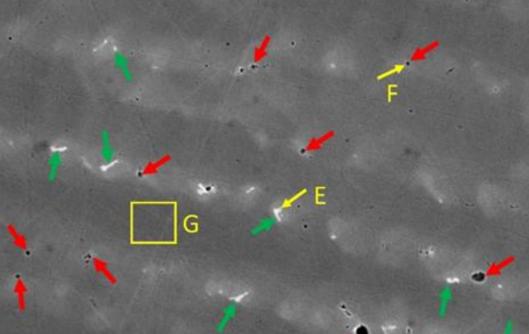



RT TENSILE PERFORMANCE

Heat treating IN625
 increases UTS by 6 %

 Alloy
 Condition
 UTS (MPa)
 0.2% YS (MPa)
 Elongation (%)


 IN718
 WAAM
 as-dep
 841.70
 528.84
 30.47%
 Location of tensile specimens <u>Axis key:</u> BD = Build direction TT = Through thickness



MICROSTRUCTURE

- Complex intermetallic phase segregated Ni₂Nb/Cr₂Mo
- Ti rich carbides TiC
 - Sites where composition was analysed

WA = Wall axis

RT HARDNESS

- Compared to as-deposited material:
 - Heat treating IN625 increases hardness by 5.7 %
 - Heat treating IN718 increases hardness by 32 %
- WAAM process partially ages alloys
 - IN718 undergoes a more extensive ageing

	process			450 —			As-deposited	
	Alloy	Alloy Condition		Hardness (HV)	400 — 350 —		■ Heat treated ■ Wrought	
	IN718	WAAM	as-dep	293.9	(H) 300 -			
			Heat treated	388 ^[a]	Hardness (H			
		Wrought		354 ^[b]	Har 150 —			
		WAAM	as-dep	248.5 ^[c]	100 —			
	IN625		Heat treated	262.8 ^[c]	50 —			
		Wrought		238 ^[d]	0 —	IN718		IN625

	EDS Composition – compared to wire composition						
	green = more, red = less, purple = anomaly						

	% At.							
Spectrum Label	IN718				IN625			
	А	В	С	D	E	F	G	
С	12.04	0	10.02	0	18.35	12.82	9.73	
F	6.95							
Al	1.11	0	1.25	15.20	0.22	0.31	0.38	
Si					0.73	0.18	0.12	
Ti	1.50	1.95	0.63	51.85	0.25	1.52	0.17	
Cr	16.64	17.67	19.97	0	17.24	20.32	23.64	
Fe	13.77	12.96	18.30	0		0.17	0.21	
Ni	42.51	46.26	46.92	0	35.18	50.61	60.36	
Nb	3.91	21.15	1.39	32.95	16.46	7.81	1.00	
Мо	1.58	0	1.53	0	11.58	6.25	4.39	

CONCLUSIONS

		¢				-	
SEM MAG: 2.00 kx	SEM HV: 20.0 kV	hulun	VEGA3 TESCAN	SEM MAG: 3.00 kx	SEM HV: 20.0 kV	Luuti	VEGA3 TESCAN
View field: 138 µm	WD: 14.97 mm	20 µm		BI: 13.00	WD: 10.07 mm	20 µm	
Det: BSE	BI: 10.00		Cranfield University	Det: BSE	View field: 92.3 µm		Cranfield University
IN718 – (TT & showing grain		eposited sample ed zones.	IN625 - (TT & WA cross-section) post-deposition heat- treated sample showing segregated zones.				

- Nb & Mo segregate and contribute to formation of Laves phases, specifically A₂B type, indicated in both alloys with precipitation seen at the grain boundaries and inter-dendritic regions.
- WAAM build alloys in as-deposited condition achieved on average 62 % of their max. stated values from wrought data.
- WAAM partially ages IN625 and heat-treating increases UTS performance by ~6 %.

Mr William Sean James, Dr Supriyo Ganguly, Dr Goncalo Pardal

- Welding Engineering & Laser Processing Centre Cranfield University
- w.james@cranfield.ac.uk

www.cranfield.ac.uk

References: **[a]** Xu, X., Ganguly, S., Ding, J., Seow, C. E. and Williams, S. (2018) 'Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing', Materials and Design. Elsevier Ltd, 160, pp. 1042–1051. **[b]** Special Metals (2007) INCONEL® alloy 718. Available at: https://www.specialmetals.com/assets/smc/documents/inconel_alloy_718.pdf (Accessed: 8 May 2020). **[c]** Kasravi, N., Hidayat, R., Tuncer, C., Themistokleous, M. and Sambo, A. M. (2021) ADDITIVE MANUFACTURE OF ALLOYS FOR HIGH TEMPERATURE APPLICATION. Cranfield University. **[d]** Special Metals (2013) INCONEL® alloy 625. Available at: https://www.specialmetals.com/assets/smc/documents/alloys/inconel/alloy-625.pdf (Accessed: 4 June 2020). **[e]** Donachie, M. J. (2002) 'Superalloys: A Technical Guide, 2nd Edition', America. doi: 10.1361.