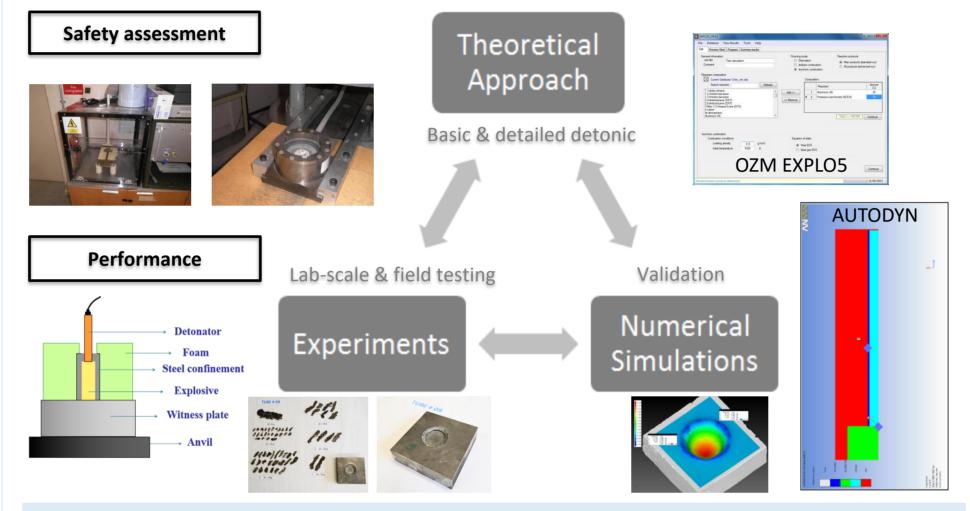


Home Made Explosives (HME) How to understand the threats and model the risk?

1. Context

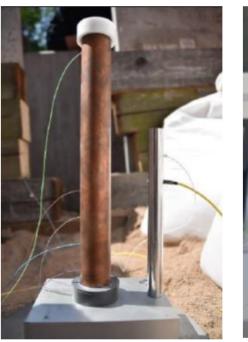

- ➤ **HME** = major public security concern, requiring specific risk assessments for first responders
- Current Threat worldwide:
 - Mixing of highly energetic pyrotechnics
 - Synthesis of peroxide explosives
- > 1st investigated HME: Urea Hydrogen Peroxide (UHP)
 - Availability of ingredients + Ease of manufacture
 - Lacking research data

2. Challenges and objectives

- ➤ HME vs Explosive performance and safety standards
 → Extend the knowledge → understand the threat
- HME vs standard (ideal) detonation theory
 - → Predicting the effects → model the risk

3. General approach

4. Preliminary results


- Safety assessment
 - Lab scale sensitivity testing (impact, friction, ESD)
 - Thermal characterization (DSC, TGA-MS, ToI)

Performance

- Bomb calorimetry and Explo5 predictions
- Preliminary detonation testing (brisance)
- Preliminary testings highlight that UHP is fairly insensitive to handle and has non-ideal tertiary explosive behaviour. Brisance has been demonstrated. A steady-state detonation regime will strongly depend on confinement, booster size and charge diameter.

5. What's next

- Detailed Detonic investigation & numerical validation
 - Detonation velocity, Detonation pressure
 - Shock sensitivity
 - Blast measurements
 - Fragmentation analysis and Post-blast residues
 - UHP with additional energetics
 - Cylinder expansion testing JWL Equation of state

Acknowledgements

The author's battalion, the SEDEE-DOVO, is acknowledged for the support for the experimental campaigns. OZM Research (CZE) is acknowledged for the delivery of the OPTIMEX 64 equipment and the provided online training.

F. Halleux ^{1, 3}, Dr J-F. Pons ¹, Dr I. Wilson ¹, Prof M. Lefebvre ², R. Van Riet ², O. Timmermans ³

- 1. Centre for Defence Chemistry, Cranfield University, Defence Academy of the United Kingdom F.Halleux@cranfield.ac.uk
- 2. Department of Chemistry, Royal Military Academy, Brussels, Belgium
- 3. Explosive Ordnance Disposal Battalion (SEDEE-DOVO), Oud-Heverlee, Belgium

