```
Algorithm 1: 2D ingot evaporation model - Ingot definition
    \%\% Request user input parameters;
    Request \(t_{p}=\) time required for e-beam to draw a pattern \& time step used in time discretization;
    Request;
    for \(i \in\) Oxidelist do
        \(X_{i}=\) mass fraction for oxide i (in wt\%)
    end
    Request \(N=\) number of points used to discretize the target height;
    Request \(M=\) number of points used to discretize the target width-wise;
    Request \(t_{\text {dep }}=\) deposition time;
    \%\% Initialize target matrices and physical parameters for constituent oxides;
    Given \(n=\) number of oxides in oxide list;
    Given \(N_{A}=\) the Avogadro Number;
    Given \(k_{B}=\) the Boltzmann constant;
    Given \(D_{t}=\) Target diameter;
    Given \(H_{t}=\) Target height;
    Given \(T(y)=\) Temperature distribution on ingot surface;
    /* Define dimensions of finite elements */
    \(\delta_{X}=H_{t} / N\);
    \(\delta_{Y}=D_{t} / M\);
    for \(i \in\) Oxidelist do
        /* Define physical properties of the oxides */
        \(\rho_{i}=\) oxide density of oxide i;
        \(\mathrm{Mmol}_{i}=\) molar mass of oxide i;
        \(V_{P_{i}}(T)=\) Vapour pressure as a function of temperature ;
        /* Calculate volume fraction of the oxide */
        \(V_{i}=\frac{X_{i}}{\rho_{i}} \frac{1}{\sum_{i=1}^{n} \frac{X_{i}}{\rho_{i}}} ;\)
        /* Calculate number of molecules per finite element */
        \(N_{M_{i}}=N_{A} \rho_{i} \delta_{X} \delta_{Y}{ }^{2} X_{i} / M m o l_{i}\);
        /* Initialize target matrix for each oxide */
        \(T M_{i}=N_{M_{i}} * J[N, M]\), where \(\mathrm{J}[\mathrm{N}, \mathrm{M}]\) is an all-ones matrix of dimensions \(\mathrm{N}, \mathrm{M}\);
    end
```

```
Algorithm 2: 2D ingot evaporation model - Evaporation loop
    \(\% \%\) Calculate the evaporation rate distribution on the surface for each oxide;
    for \(i \in\) Oxidelist do
            for \(y \in M\) do
                \(\delta_{m_{i}}[y]=\sqrt{\frac{M m o l_{i}}{2 \pi k_{B} T(y)}} V_{P_{i}}(T(y))\); where \(\delta_{m_{i}}\) is a vector of dimension M representing the
                molecules evaporated for oxide i from the ingot surface;
            end
    end
    \%\% Calculate the evaporation in the specified time;
    while \(t \leq t_{\text {dep }}\) ) do
            for \(i \in\) Oxidelist do
                while \(y \leq M\) do
                        while \(x \leq N\) do
                                if \(T M_{i}[x, y]>0\) then
                                \(T M_{i}[x, y]=T M_{i}[x, y]-\delta_{m_{i}}[y] ;\)
                                if \(T M_{i}[x, y]>=0\) then
                                \(y=y+1 ;\)
                                else if \(T M_{i}[x, y]<0\) then
                                    \(T M_{i}[x+1, y]=T M_{i}[x+1, y]-T M_{i}[x, y] ;\)
                                    \(y=y+1 ;\)
                                end
                            else if \(T M_{i}[x, y] \leq 0\) then
                                \(x=x+1 ;\)
                        end
                        Break;
                end
                Break
            end
        end
        \(x=0\);
        \(y=0\);
        \(t=t+t_{p} ;\)
    end
```

