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A systematic comparison of the principle modern turbulence prediction methods for the 

solution of the Navier-Stokes equations for the calculation of high speed flows about 

slender forebodies at low to moderate angle of attack is presented. This class of flow 

involves smooth surface turbulent boundary layer separation resulting in steady 

symmetric leeside vortices, and also the formation of embedded shock waves from the 

displacement effect of the large vortices in supersonic flow. As such this flow is both 

complex and highly sensitive to the state of the boundary layers on the body. This study 

revealed that the method which most consistently provides accurate predictions of the 

overall forces and moments on the body, the most accurate distribution of surface 

pressure and can most accurately resolve the flow features, including leeside vortices 

and embedded shock wave features, is the Solution Adaptive Simulation method. 

Detached Eddy Simulation and the Reynold Stress Model, which would be expected to 

provide superior accuracy over the RANS based linear eddy viscosity models, on the 

whole, failed to provide better predictions. In fact, the k- Realizable and k- SST 

turbulence models provided data which was almost as consistently accurate as the 

Solution Adaptive Simulation method. The standard k- turbulence model appears to 

be completely unsuitable for the computation of this class of high speed flow problem, 

and this may be associated with the poor initial / default prescription of the value of  

at the far-field boundary. 

 

 

Nomenclature 

 

CA Axial force coefficient based on afterbody cross-section area. 

CN Normal force coefficient based on afterbody cross-section area 

CM Pitching moment coefficient about the forebody nose, based on afterbody cross-section area. 

D Afterbody diameter (m) 

Cp Surface pressure coefficient 

L Overall length of the body (m) 

M Mach number 

p Static pressure (Pa) 

P0 Total (Stagnation) pressure (Pa) 

Pp Pitot pressure (Pa) 

ReD Reynolds number based on D. 

x Axial distance from the forebody nose (m) 

y, z Distance from the forebody nose in the direction of, and at 90o to, the crossflow wind vector 

respectively. 

 Angle of attack (deg) 

 Circumferential angle around body, from leeward symmetry plane (degrees) 

∞ denotes freestream values. 
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1. Introduction 
 

The accurate prediction of the physics of the development of slender body boundary layers, their 

separation and subsequent formation of leeside vortices is an important prerequisite to the accurate 

aerodynamic simulation of complete missile and fighter aircraft configurations. The leeside vortical 

structures generate strong suctions on the body which result in highly non-linear loading 

characteristics. As these body vortices evolve and convect downstream, they will interact with any 

aerodynamic surface, intakes or other protuberances which obstruct their path. 

As a forebody encounters flow at increasing angle of attack, the leeward flow structure goes 

through several distinct physical regimes. At incidences above a few degrees the boundary layer on 

the body will separate as it passes onto the leeside of the body where the local pressure gradient 

becomes adverse. The separated boundary layer becomes a free shear layer, which possesses a 

rotational characteristic, or vorticity, due to the higher velocities outward than near the surface. The 

shear layers then tend to curl up to form well defined vortices in the leeward quadrants. At low to 

moderate angles of attack these leeside vortices tend to form a symmetric pattern, as illustrated in 

figure 1, and the flow will be quasi-steady. The fully developed symmetric vortex structure is 

characterised by strong primary and weaker secondary vortices together with their associated 

separation and reattachment points. Under certain conditions further, even smaller, vortices may also 

develop close to the body surface.  

 

 

 
 

Figure 1: The crossflow symmetric vortex structure of the moderate a flow around a cylindrical 

forebody. 

 

 

At some critical angle of attack, dependent on the body surface roughness, the flow Reynolds 

number and external disturbances such as turbulent intensity and acoustic noise, the symmetric 

pattern breaks down and one vortex will become dominant, located closer to the surface and thereby 

inducing more suction and therefore a side force. Initially this asymmetric flow regime can exist in a 
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quasi-steady state. With increased angle of attack, and thereby crossflow pressure gradients, this flow 

regime then breaks down into one where the flow becomes highly unsteady with vortices successively 

shed from one side of the body and then the other. In this flow regime, the normal force and side 

forces generated on the body become unsteady. 

The study presented in this report focuses on the prediction of the steady, symmetric vortex flow 

for moderate angles of attack on smooth surface cylindrical forebodies, and the identification of the 

most accurate of the turbulence modelling and simulation methods below the fidelity of Large Eddy 

Simulation. Smooth surface separation of turbulent boundary layers is known to be a significant 

challenge for modern Navier-Stokes solvers using Reynolds averaging turbulence models, and even 

for higher fidelity methods which aim to resolve Reynolds stresses or capture, in unsteady simulation, 

the large eddies in the outer boundary layers. If the windward surface attached boundary layers, and 

their evolution within high pressure gradients, are not accurately predicted, their separation location 

and characteristics will also not be properly captured, and the subsequent vortex roll up will result in 

errors in predicted vortex structure and non-linear force characteristics. 

Many investigators have computed such smooth surface slender body flows [1], [2], [3] and have 

found that the accurate computation of the boundary layer / vortex characteristics is not trivial, 

especially when the flow field is turbulent. In this study four experimental test cases were chosen, 

each of which provide detailed and relatively accurate measurements of surface and off-surface flow 

characteristics, for a comprehensive assessment of the ability of the most commonly employed 

turbulence models and turbulence simulation methods. A modern high resolution Navier-Stokes 

solver was employed to model or simulate these four experimental test cases, using seven Reynolds 

averaging, linear eddy viscosity turbulence models together with the Reynolds Stress Model and two 

reduced Large Eddy Simulation based methods. 

Section 2 of this report details the four experimental tests cases, the flow conditions and 

measurement methods employed. Section 3 describes the Navier-Stokes solver used and a detailed 

description of the various turbulence models and simulation approaches used, together with their 

known advantages and deficiencies. The section also describes the computational meshes used and 

the strategy employed to ensure grid independent results. The results and comparative analysis for 

the four test cases investigated are presented in section 4, and the final conclusions derived from the 

study are presented in section 5. 

 

 

2. The Experimental Test Cases 
 

All four experimental test cases used a classic three calibre tangent-ogival cylindrical cross-

section forebody of diameter, D, with an extended cylindrical afterbody giving a total body length, L. 

Table 1 presents the details for each of the experimental test cases used in this study, including 

freestream Mach number, M∞ , angle of attack, , stagnation pressure, P0 , stagnation temperature, T0 

, and Reynolds number based on afterbody diameter, ReD  

. 

 

Case Body D (mm) L/D M∞   (deg) ReD P0 (kPa) T0 (K) 

1 B2 80 15 2.0 0 1.2 x 106 120 300 

2 B2 80 15 2.0 10 1.2 x 106 120 300 

3 B1A 93.98 13 0.7 14 0.667 x 106 51 294 

4 B1A 93.98 13 2.5 14 1.123 x 106 142 308 

 

Table 1: Experimental details for each of the four test cases. 
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The first and second test cases were provided by the French Office National d’Études et de 

Recherches Aérospatiales (ONERA), which tested a 15 calibre body, designated B2, in the in the 

0.30m x 0.30m ONERA S5Ch wind tunnel [4]. In these experiments turbulent boundary layers were 

tripped using transition strips located at x/D=0.15. Measurements were made of surface pressures 

using surface embedded tapping for both test cases. For case 1, at zero incidence, the Mach number 

and total pressure ratio was measured within the boundary layer at x/D stations of 3, 5, 7, 9 and 12. 

For case 2, for  = 10o, surface pressure was measured circumferentially at x/D stations 5, 7 and 9. 

Crossflow contours of total pressure, Mach number and local flow angle were measured at the same 

axial stations using a five hole probe and a traverse system. The experimental accuracy was 

determined from a repeatability assessment. The freestream conditions were quoted with the 

following accuracy: M = ±0.01, P =±30Pa within the range 2 – 50kPa and  = ±0.1o. The five-

hole probe was calibrated with the following quoted accuracy: M = ±0.02, P =±30Pa within the 

range 2 – 50kPa and  = ±0.2o. The spatial accuracy of the traverse mechanism was quoted as x, 

y, z = ±0.2mm. Barberis [5] states that the various properties were measured with an accuracy of 

2 – 3% in regions where gradients were moderate, but at 5 – 10% in the core of the more intense 

vortices where gradients are much higher. 

Test cases 3 and 4 come from experiments at the UK Defence Research Agency (formerly the 

Royal Aerospace Establishment) in Bedford by Ward et al [6], [7], [8]. The model, designated B1A, 

consisting of a 13 calibre cylindrical body of 3.7 inch diameter having a 3 calibre tangent-ogival nose, 

was common to both tests. For test case 3, the model was tested in the 8ft x 8ft High Speed Wind 

Tunnel at a Mach number of M=0.7, and for case 4 at Mach 2.5 in the 3ft x 4ft High Speed Supersonic 

Tunnel. Both experiments were performed with a transition strip of carborundum grit of height 0.5mm 

at x/D = 0.3. Surface pressure measurements were acquired using the same technique used in the 

ONERA B2 tests, while crossflow contours of total pressure ratio (for the transonic case 3) and pitot 

pressure ratio (for the supersonic case 4) were measured using a traversing pitot-static tube with the 

same spatial accuracy as that in the ONERA tests. Pitot pressure, pp , is the local total pressure 

measured by a pitot tube in a supersonic flow where the nose of the tube generates a locally normal 

detached bow shock wave, thereby reducing the total pressure from its freestream value, and is 

obtained with the Rayleigh pitot equation: 

 

𝑝𝑝 = 𝑝 (
(𝛾 + 1)2𝑀2

4𝛾𝑀2 − 2(𝛾 − 1)
)

𝛾 (𝛾−1)⁄
1 − 𝛾 + 2𝛾𝑀2

𝛾 + 1
 

 

     (1) 

where M and p are the local values of the is the Mach number and static pressure respectively. The 

pitot pressure ratio, pp/pp∞ , is simply the ratio of the local to the freestream value of this pressure. 

Freestream test conditions for each test are presented in table 1. Experimental accuracy was quoted 

as: Cp = ±0.003, (Pp/Pp∞) = ±0.0025, M = ±0.01 and  = ±0.05o. 

 

 

3. The Computational Study 
 

3.1 Computational Fluid Dynamics 
 

The Navier-Stokes equations are a set of coupled differential equations that predict all physical 

flow features of an unsteady, compressible, viscous continuum flow. The idea behind Computational 

Fluid Dynamics relies on the mathematical manipulation of these governing equations to predict the 

flow properties of a specific case given a set of initial conditions, all this through an iterative process 

in a computer. This manipulation generally consists of the division of the flow domain into discrete 

control volumes (cells) and the integration of these governing equations along them through the use 

of Gauss divergence theorem as part of the Finite Volume Method [9]. 

https://www.grc.nasa.gov/WWW/k-12/airplane/state.html
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Assumptions can be made to produce reduced forms of the Navier-Stokes equations that are 

generally computationally less expensive. These forms however exist at the expense of accuracy 

depending on the way they approximate the Navier Stokes equations and model the physical flow 

features. A graphic comparison of some of these approximation methods is presented in figure 2 by 

order of complexity and fidelity, starting from the full unsteady solution of the Navier-Stokes 

equations by Direct Numerical Simulation down to the solution of the incompressible potential-flow 

equations done in Panel methods, i.e., linearised potential methods. 

 

 
Figure 2. Approximations of the governing equations for continuum flow. Prince [10] 

 

 

The potential methods represent the least accurate way to determine the flow features of a given 

case. The method assumes inviscid, incompressible, steady and irrotational flow and vortices are only 

modelled through potential flow. Consequently, they have a minimal range of applicability and are 

mainly used to provide rough estimates of aerodynamic forces of simple/simplified bodies. 

In the models based on the Euler equations, the flow is assumed to be inviscid and adiabatic, and 

viscous phenomena are not physically described. Solution of the boundary layer equations can be 

coupled with the Euler method, and boundary layer separation can be modelled by explicit boundary 

conditions to force flow separation. This method has been shown to be capable of capturing vortical 

structures in steady, incompressible flow on sharp-edged delta wings with plausible correlations [11], 

given the essentially inviscid nature of the large scale eddies of a fully developed leading-edge vortex. 

Regardless of the capabilities of these approximation methods, to adequately study cases where 

viscosity plays a significant role, such as the formation of secondary and tertiary vortex systems, the 

vortex breakdown or the vortex core region, more accurate, high-order methods are required.  

On the other side of the spectrum, Direct Numerical Simulation (DNS) represents the most 

comprehensive simulation method currently available. In this case, the unsteady Navier-Stokes 

equations are solved directly as a function of space and time, resulting in a complete description of a 
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turbulent flow. The method requires a sufficiently fine mesh and sufficiently small time steps to 

resolve the smallest turbulent eddies (Kolmogorov length scale) and the fastest velocity fluctuations 

[12][13]. Consequently, the calculations become so computationally demanding that the application 

of the method is generally limited to fundamental physics studies, including incompressible flow and 

Reynolds numbers much lower than those of typical practical applications [13]. 

The Large Eddy Simulation (LES) method is an intermediate form of turbulence calculation in 

which a spatial filtering operation is done to separate the large and small scale motions so that the full 

unsteady Navier-Stokes equations can be solved within regions with length scales greater than a 

specific cut-off size, while the zones with smaller turbulent scales are modelled with a sub-grid-scale 

(SGS) model [9]. This method requires a complex algorithm to smoothly blend the resolved scales 

and the modelled effects, and although it can handle more complex geometries and higher Reynolds 

numbers than DNS, it is still computationally demanding and is used only sparingly for practical 

applications [13].  

Another approximation method is the Reynolds-Averaged Navier-Stokes (RANS) method and is 

focused on the mean flow properties. For this method, Reynolds decomposition (i.e., the definition 

of a property as the sum of a steady mean component and a time-averaged fluctuating one) is applied 

to the flow velocity components and static pressure before being replaced in the continuity and 

Navier-Stokes equations, which are then time-averaged and solved through the use of turbulence 

models. These models consider different approaches to obtain the Reynolds stresses that result from 

the time averaging operation and express them as a function of eddy viscosity through the Boussinesq 

assumption, to close the Reynolds-Averaged Navier-Stokes equations and compute the features of 

turbulent flows. 

The RANS approximation is the most widely used for practical applications due to its proven 

reliability and reasonable computational cost. However, given that it only produces steady solutions 

to the governing equations, it is not suitable for the study of unsteady phenomena such as the vortex 

breakdown.  Another limitation inherent in eddy viscosity models is the inaccurate assumption of 

isotropic turbulence (i.e. constant fluctuations in different directions) which further reduces the 

accuracy of the predicted unsteady phenomena[9][13]. 

The Unsteady Reynolds-Averaged Navier-Stokes (URANS) approximation attempts to address 

these limitations by retaining the transient (unsteady) term in the momentum equation while using 

the classical RANS approximation [14][15]. Unfortunately, preliminary computations on bodies at 

high angles of attack were equivalent to steady RANS simulations and did not capture any significant 

unsteadiness [11].  

A hybrid RANS/LES approach known as Detached Eddy Simulation (DES) was developed to 

model the near-wall regions using a RANS approach and to resolve the rest of the flow through the 

LES approximation. The method leverages some of the features of RANS and LES, which ultimately 

allow for less computationally demanding unsteady simulations while achieving high levels of 

accuracy. The more flexible grid size requirements and the isotropic assumption of the RANS 

approximation allow for the modelling of the smaller eddies found inside the boundary layer (which 

are nearly isotropic in nature for flows at high Reynolds numbers [14]). On the other hand, the 

capabilities of LES more properly resolve the flow regions governed by the more anisotropic larger 

eddies [15].  

A modified distance function that depends on the local grid spacing (i.e. the maximum cell length 

among the three grid directions) and the wall distance, is used to switch from RANS to LES modes. 

The function works in such a way that the RANS mode operates when the wall distance is smaller 

than the grid spacing, and the LES mode works outside the boundary layer where the grid spacing is 

smaller. This method is, however, prone to failure due to its high dependence on grid size. Depending 

on the case, the use of a mesh of inadequate size, could activate the LES mode inside the boundary 

layer and result in a poorly resolved region and inaccurate predictions if the mesh is not fine enough 

for the LES approximation to resolve the small eddies present in this area [15][16]. This switch in 

method due to ambiguous grid features is known as Modelled-Stress Depletion (MSD) and represents 

the main limitation of the method. 
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The Delayed-Detached Eddy Simulation (DDES) approach is a modified version of DES that 

uses an adjusted switching function to “shield” the boundary layer and delay the LES mode. This 

function considers boundary layer information such as the kinematic eddy viscosity, the molecular 

viscosity and velocity gradients to blend it with any eddy viscosity model better and avoid erroneous 

switches of approximation [16].  

Another approach developed to address the MSD phenomena is known as Scale Adaptive 

Simulation (SAS). The method uses an improved URANS formulation that relies on the use of the 

von Karman length scale (i.e. a parameter based on the ratio between the first and the second velocity 

gradients), rather than the explicit grid spacing used in DES or the turbulent length scale used in 

RANS models, to determine the local scale of the flow field. This allows the SAS models to 

automatically adjust to the length-scale present in the case and behave in a LES manner in unsteady 

regions, while using a RANS formulation in stable zones [17][18][19].  

To sum up, the selection of an approximation method to the Navier-Stokes equations for the 

analysis of a given case study requires a deep understanding of its advantages and limitations as well 

as the nature of the involved phenomena involved. In the context of the present study, the use of 

inadequate methods could lead to an inaccurate description of the evolution of an attached boundary 

layer in an adverse pressure gradient and would imply erroneous predictions of: 1) its separation point 

and roll-up features, and 2) the global effect of the resultant vortices on the body aerodynamic forces. 

The development of models for the prediction of vortex flows for general aerospace applications 

represents a still ongoing effort and, in Luckring [11], a detailed chronological review on the progress 

up to recent years is presented. 

Altogether, the present study will focus on the capability assessment of RANS, DDES and SAS 

approaches, given the improved level of accuracy of the latter methods and the “cost-benefit” 

advantage of RANS models. The following section will provide in-depth insight of the RANS 

method, given the amount of currently available turbulence models, and will present details on their 

respective formulation as well as their capabilities in the framework of the present study. 

 

 

3.2 RANS Turbulence modelling 
 

As previously explained, the Reynolds-Averaged Navier-Stokes equations, result from the 

Reynolds decomposition applied to the Navier-Stokes equations and the further time-average taken 

on the resultant expressions. Equation 2 shows the final equation for the x momentum, where 𝑈 and 

𝑢𝑖 respectively represent the flow velocity and its x component. 

 

 

 

𝜕(𝜌𝑢𝑖̅̅ ̅̅̅)

𝛿𝑡
+ 𝑑𝑖𝑣(𝜌𝑢𝑖𝑈̅̅ ̅̅ ̅̅ ̅) =  −

𝛿𝑃̅

𝛿𝑥𝑖
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑(𝑢𝑖̅)) − 𝑑𝑖𝑣(𝜌𝑢′

𝑖𝑈
′̅̅ ̅̅ ̅̅ ̅̅ ̅) 

 

(2) 

           (𝐼)               (𝐼𝐼)                (𝐼𝐼𝐼)             (𝐼𝑉)                        (𝑉)  

 

 

In this case, the averaging operation introduces six additional terms, known as Reynolds stresses, 

which involve the interaction of fluctuating velocities and are related to the momentum exchange 

between turbulent eddies, as shown by term (V) of equation 2. These terms correspond to three normal 

and three shear stresses and generate the so-called closure problem: a system of four equations (the 

continuity and Navier-Stokes equations) with ten unknowns (three velocity components, pressure and 

six Reynolds stresses) [15].  

 

 



8 

 

In the RANS method, turbulence models are used to predict the Reynolds stresses and close the 

system of equations. These models are based on Boussinesq’s hypothesis, shown in equation 3, which 

evolved from the assumption that Reynolds stresses have an analogous nature to the viscous ones and 

can therefore be described by Newton’s law of viscosity.  

 

 

−𝜌𝑢′
𝑖𝑈

′̅̅ ̅̅ ̅̅ ̅̅ ̅ =  𝜇𝑡 (
𝛿𝑢𝑖̅

𝛿𝑥𝑗
+ 

𝛿𝑢𝑗̅

𝛿𝑥𝑖
) −  

2

3
𝜌𝑘𝛿𝑖𝑗 (3) 

 

       (𝐼)                       (𝐼𝐼)                (𝐼𝐼𝐼) 
 

 

The term (III) of the equation features 𝑘 which represents the mean turbulent kinetic energy per 

unit of mass and 𝛿𝑖𝑗 known as Kronecker’s delta, which deals with the normal stresses. The equation 

also features 𝜇𝑡 in term (II) which is the turbulent or eddy viscosity and represents the unknown part 

that the so-called linear Eddy Viscosity Models (EVM) aim to predict. In this regard, these models 

are generally classified based on the number of additional transport equations that need to be solved 

along with the RANS equations and some of them are outlined below.  

 

3.2.1 Zero-equation EVM 

 

In this type of model the turbulent viscosity is obtained algebraically, and for this reason they are 

also known as Algebraic Eddy Viscosity Models. Amongst them, the Baldwin-Lomax model [20] is 

also classified as a two-layer model in the sense that it splits the boundary layer into two regions, an 

inner and an outer, and considers different formulations to treat each one of them. In the inner region, 

the turbulent viscosity (𝜇𝑡)𝑖𝑛𝑛𝑒𝑟 is obtained through the Prandtl-Van Driest formulation, while in the 

outer, the viscosity (𝜇𝑡)𝑜𝑢𝑡𝑒𝑟 is found through a modification of the Cebeci-Smith model [21], as 

shown by equation 4 [20]. The model uses the local distance normal to the wall as reference and 

considers the smallest distance at which both inner and outer turbulent viscosities are equal, as the 

switching parameter between regions, i.e., 𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟. 

 

 

𝜇𝑡 =  {
(𝜇𝑡)𝑖𝑛𝑛𝑒𝑟 =  𝜌(𝑘𝑦𝐷)2|𝜔| , 𝑦 ≤ 𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟

(𝜇𝑡)𝑜𝑢𝑡𝑒𝑟 = 𝐾𝐶𝑐𝑝𝜌𝐹𝑤𝑎𝑘𝑒𝐹𝑘𝑙𝑒𝑏 , 𝑦 > 𝑦𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟
 (4) 

 

 

In equation 4, 𝜌, 𝑘, 𝐷 and |𝜔| in (𝜇𝑡)𝑖𝑛𝑛𝑒𝑟 respectively correspond to the density, Karman 

constant, Van-Driest damping factor and magnitude of vorticity, while 𝐾 in (𝜇𝑡)𝑜𝑢𝑡𝑒𝑟 represents the 

Clauser constant, 𝐹𝑘𝑙𝑒𝑏 is an intermittency function, 𝐶𝑐𝑝 is a constant derived from the Cebeci-Smith 

model formulation [34] and 𝐹𝑤𝑎𝑘𝑒, is given in equation 5, and is proportional to both the maximum 

value of the function 𝐹(𝑦) defined in equation 6 and its normal position. 

 

 

𝐹𝑤𝑎𝑘𝑒 =  𝑦𝑚𝑎𝑥𝐹𝑚𝑎𝑥 

 

(5) 

𝐹(𝑦) = |𝜔| 𝑦 [1 − 𝑒
−(

𝑦+

𝐴+⁄ )
] 

 

 

(6) 

Where 𝐴+ in equation 6 is a constant used in the Van Driest formulation and 𝑦+ is the friction 

height. The values of these constants are given in reference [20]. 
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At its core, the formulation of the model searches outward for the peak in 𝐹(𝑦), cuts off once the 

peak is reached and repeats the analysis at each axial station around the body. The model tends to 

overestimate (𝜇𝑡)𝑜𝑢𝑡𝑒𝑟 in bodies with large crossflow separation regions, due to an erroneous 

evaluation of 𝑦𝑚𝑎𝑥 [10][22]. This ambiguity due to physical flow features is shown by the points 𝑎 

and 𝑏 of ray 𝑦2 in figure 3 and to prevent it, the Dagani-Schiff adaption to the model, determines 

𝐹𝑚𝑎𝑥 once the value of 𝐹(𝑦) drops to 90% of the first detected maximum [22]. 

Altogether, the Baldwin-Lomax model with the Degani-Schiff modification has been 

successfully used to study slender body, compressible, vortex dominated flows [10] and is still in use 

due to its ease of implementation and minimum requirements [20].  

 

 

 

 
Figure 3. Crossflow flow structure with details for the Degani-Schiff formulation. [22]  

 

 

 

3.2.2  One-equation EVM 

 

Although zero-equation models are still in use today, they exhibit several shortcomings that 

highly limit their applicability. This type of models are not local, meaning that the equation at one 

point in the domain, depends on the solutions found at other points, and are therefore only suited for 

simple geometries having smooth, structured grids [23]. Besides, they frequently show a weaker 

performance in more complex cases such as separated boundary layers and their use for the study of 

vortical flows should be carefully considered.  

In one-equation models these limitations have been addressed with the specification of a length 

scale by means of an algebraic formula (similar to the zero-equation models) and the addition of one 

transport equation. 
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Out of the several examples of this type of models, the Spalart-Allmaras [23] is one of the most 

recent and widely used. The model involves a transport equation, shown in equation 7, for a parameter 

based on the kinematic eddy viscosity (𝑣̃) that relates to the dynamic eddy viscosity by equation 8. 

 

 

𝜕(𝜌𝑣̃)

𝛿𝑡
+ 𝑑𝑖𝑣(𝜌𝑣̃𝑈) =

1

𝜎𝑣
𝑑𝑖𝑣 [(𝜇 + 𝜌𝑣̃) 𝑔𝑟𝑎𝑑(𝑣̃) + 𝐶𝑏2𝜌

𝜕𝑣̃

𝜕𝑥𝑘

𝜕𝑣̃

𝜕𝑥𝑘
] + 𝐶𝑏1𝜌𝑣̃𝜔̅ − 𝐶𝑤1𝜌 [

𝑣̃

𝑘𝑦
]

2

𝑓𝑤           (7) 

(     
                    (𝐼)           (𝐼𝐼)                                       (𝐼𝐼𝐼)                                     (𝐼𝑉)               (𝑉) 

 

 

 

𝜇𝑡 =  𝜌𝑣̃𝑓𝑣1    (8) 

 

 

In equation 7, the term (𝐼𝐼𝐼), corresponds to the transport of 𝑣̃ by turbulent diffusion, the terms 

in block (𝐼𝑉) represent the rate of production of 𝑣̃ as function of the local mean vorticity, and the 

term (𝑉) is the rate of dissipation of 𝑣̃ as function of a length scale (𝑘𝑦) that depends on the distance 

to the wall and the von Karman constant [23]. The term, 𝑓𝑣1 in equation 8 is a wall-damping function 

that depends on (𝑣̃ 𝑣⁄ ), i.e., the ratio between the kinematic viscosity parameter and the kinematic 

viscosity, and tends to unity at high Reynolds numbers and zero at the wall region [9]. Further wall-

damping functions were also developed and included in the transport equation to maintain the model’s 

behaviour throughout the different regions of the boundary layer, as well as a series of constants 

specifically calibrated for external aerodynamic flows [9][23].  

The result is a robust and easy to implement model that has been extensively validated for 

external flows in aerospace applications and has been shown to provide appropriate performance in 

cases with boundary layers subjected to adverse pressure gradients. It presents, however, a general 

difficulty to define the length scale in cases with complex geometries and rapidly changing flows 

with high levels of anisotropy [9], and the general nature of its constants make it unsuitable for 

general-purpose CFD.  

 

3.2.3 Two-equation EVM 

 

Regardless of their relative success, the inherent features of one-equation models, i.e., the use of 

only one transport equation and the need of a priori knowledge of the length scale for each particular 

case, make them inappropriate to accurately describe the details of general turbulent motions. 

 A step forward is taken by the two-equation models that incorporate a second transport equation 

to further determine both the turbulent velocity and length scales, representative of large-scale 

turbulence, and better comply with the general description of the eddy-viscosity as the product of 

these scales [24].  At its core, this type of model involve more realistic descriptions of the dynamics 

of turbulence, and most of them focus on the mechanisms that affect the transport of turbulent kinetic 

energy (𝑘) [9][24]. The choice of the remaining variable is not unique, and the most widely validated 

models in this category solve either for the dissipation rate 𝜀 or the dissipation rate per unit of 

turbulent kinetic energy, i.e., 𝜔 = 𝜀 𝑘⁄ ,  as part of the 𝑘 − 𝜀  and 𝑘 − 𝜔 model formulations [25]. 

Given these features, these models are considered complete, meaning that they can be used to study 

the properties of a given turbulent flow without knowledge of its turbulent structure [26]. 

The standard 𝑘 − ε model [27], includes two transport equations, one for the  turbulent kinetic 

energy (𝑘), given in equation 9 and one for its dissipation per unit of mass (ε) in equation 10. The 

model also defines, through dimensional analysis, the required velocity and length scales to specify 

the eddy viscosity, as given by equation 11.  
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𝜕(𝜌𝑘)

𝛿𝑡
+ 𝑑𝑖𝑣(𝜌𝑘𝑈) = 𝑑𝑖𝑣 [

𝜇𝑡

𝜎𝑘
 𝑔𝑟𝑎𝑑(𝑘)] + 2𝜇𝑡𝑠𝑖𝑗 ∙ 𝑠𝑖𝑗 − 𝜌𝜀 (9) 

                          

                                         (𝐼)           (𝐼𝐼)                      (𝐼𝐼𝐼)                    (𝐼𝑉)         (𝑉) 
 

 

 

𝜕(𝜌𝜀)

𝛿𝑡
+ 𝑑𝑖𝑣(𝜌𝜀𝑈) = 𝑑𝑖𝑣 [

𝜇𝑡

𝜎𝜀
 𝑔𝑟𝑎𝑑(𝜀)] + 𝐶1𝜀

𝜀

𝑘
2𝜇𝑡𝑠𝑖𝑗 ∙ 𝑠𝑖𝑗 − 𝐶2𝜀𝜌

𝜀2

𝑘
 (10) 

                          

                                  (𝐼)           (𝐼𝐼)                     (𝐼𝐼𝐼)                      (𝐼𝑉)                 (𝑉) 
 

 

  

 

𝜗 = 𝑘1/2      𝑙 =
𝑘3/2

𝜀
 (11) 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
  

 

The terms (𝐼𝐼𝐼), (𝐼𝑉) and (𝑉) of equations 9 and 10 represent the transport by diffusion, the rate 

of production and the rate of dissipation of 𝑘 and 𝜀. Here 𝜎𝑘 and 𝜎𝜀 in the term (𝐼𝐼𝐼) of these equations 

correspond to Prandtl numbers which connect the diffusivities of 𝑘 and 𝜀 to the eddy viscosity 𝜇𝑡, 

and 𝑠𝑖𝑗 in the term (𝐼𝑉) is the mean-strain-rate tensor of a fluid element. The model at its core fixes 

a close link between 𝑘 and 𝜀 and assumes that the production (𝐼𝑉) and dissipation (𝑉) of 𝜀 are 

proportional to the production and dissipation of 𝑘, to ultimately avoid non-physical, negative values 

of turbulent kinetic energy if it decreases [9].  

Equation 10 contains the constants 𝐶1𝜀 and 𝐶2𝜀 which are closure coefficients used by the model 

due to the high complexity of the exact 𝜀 transport equation and the difficulty to measure some of its 

terms. In addition, 𝐶𝜇 in equation 11 is a dimensionless constant established from the nearly constant 

value it acquires in the logarithmic region of equilibrium flow.  

Altogether, the classic version of the model contains five adjustable constants, i.e. 𝐶𝜇, 𝜎𝑘, 𝜎𝜀, 𝐶1𝜀 

and 𝐶2𝜀, that are tuned for a wide range of turbulent flows and allow it to achieve accurate calculations 

for a wide variety of thin shear layer and recirculating flows without the need of a case-by-case 

adjustment of the constants [9]. The model is also the most widely used and validated, including 

Launder & Spalding [27], Jones & Launder [28] and Launder & Sharma [29] to mention some.  

However, the model as given tends to overestimate the shear stress in the viscosity affected region 

of the boundary layer and delay its separation for cases with adverse pressure gradients such as curved 

walls. It also has complications when dealing with swirling flows and massively separated areas due 

to the prediction of inappropriate turbulent length scales and a consequent eddy viscosity. These 

shortcomings make its use in aerospace applications not entirely recommended and importantly limit 

its use for the study of vortex phenomena [9][30]. In this case, the problem is attributed to the 

empirical way the transport equation of the turbulent dissipation rate is modelled [25] and to the 

wrong assumption of 𝐶𝜇 in equation 11 as constant along the entire boundary layer, as both 

experimental and numerical (DNS) data, have indicated a reduction in its value in the near-wall region 

(0 ≤ 𝑦+ ≤ 100) [24]. 

There are two identified ways to deal with this last issue; one uses a series of damping functions 

that reduce the value of 𝐶𝜇 in the near-wall region and the other relies on empirical wall-functions 

based on the general behaviour of near-wall flows, that bridge the near-wall region, and concern only 

a value of 𝐶𝜇 away from the wall (inertial sublayer), where the assumption of a constant value 

correctly applies. The models that abide by the first approach are known as Low-Reynolds-Number 
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(LRN) models and differ from their High-Reynolds-Number (HRN) counterparts, i.e. the latter 

approach, in that they need to be resolved down to the wall.  The Reynolds number considered here 

does not refer to the global Reynolds number, but the local turbulent Reynolds number 𝑅𝑒𝑙 = 𝜗𝑙 𝜈⁄  

formed by a turbulent fluctuation and turbulent length scale [15][24][27][28]. The use of these 

functions has been shown to improve the treatment of the near-wall region; however their general 

nonlinear nature tends to add stiffness to the formulation of the model and therefore to affect its 

convergence properties [31].  

Besides, the versatility of the classical 𝑘 − 𝜀 model allows it to be easily modified and several 

versions have been developed that are capable of addressing some of the mentioned limitations 

including Shih et al. [30] and Yakhot et al. [32]. The first one is based on a method known as the 

renormalisation group method (RNG) that heavily relies on statistical analysis and mathematical 

formalisms to systematically remove the smallest scales of turbulence from the governing equations 

and expresses them in terms of larger scale motions and a modified viscosity. Besides, this version 

of the model explicitly determines the value of its respective constants as part of the RNG method 

[9][32] and its formulation does not require the use of damping functions in the near-wall region. The 

model has shown to achieve improved predictions on wake flows when compared to the standard 

version but tends to overpredict the eddy viscosity, i.e., the model is highly dissipative, and showed 

limitations when predicting separation and reattachment points in some studied cases [33].  

The second approach is known as 𝑘 − 𝜀 Realisable [30] and is based on the application of 

realizability constraints to the Reynolds stresses. The constraints force both the normal stresses to 

remain positive, and the correlation coefficients for the shear stress not to exceed one, and make them 

consistent with the physics of turbulent flows [9][30]. The other key differences to the standard 

version include the use of a modified transport equation for the dissipation rate that is based on the 

mean vorticity fluctuation and is more physically related to the original 𝜀 equation, as well as a new 

realisable formulation for the coefficient 𝐶𝜇 which makes it variable along the boundary layer rather 

than a constant. The model as a whole has shown to outperform the standard 𝑘 − 𝜀 model in a wide 

range of tested cases, and it’s more recommended for flow topology studies [30].  

Another type of two-equation model is the 𝑘 − 𝜔 [34] that expresses the turbulent scales and the 

eddy viscosity in terms of the turbulent kinetic energy (𝑘) and the specific dissipation rate (𝜔) as 

given in equation 12  

 

𝜗 = 𝑘1/2      𝑙 =
𝑘1/2

𝜔
 (12) 

𝜇𝑡 = 𝜌
𝑘

𝜔
  

 

The model uses the two transport equations, i.e., equation 13 and 14, for 𝑘 and 𝜔. 

 

 

𝜕(𝜌𝑘)

𝛿𝑡
+ 𝑑𝑖𝑣(𝜌𝑘𝑈) = 𝑑𝑖𝑣 [(𝜇 +

𝜇𝑡

𝜎𝑘
)  𝑔𝑟𝑎𝑑(𝑘)] + [2𝜇𝑡𝑠𝑖𝑗 ∙ 𝑠𝑖𝑗 −

2

3
𝜌𝑘

𝛿𝑢𝑖

𝛿𝑥𝑗
𝛿𝑖𝑗] − 𝛽∗𝜌𝑘𝜔 (13) 

                          

                  (𝐼)           (𝐼𝐼)                      (𝐼𝐼𝐼)                                           (𝐼𝑉)                           (𝑉) 
 

 

 

𝜕(𝜌𝜔)

𝛿𝑡
+ 𝑑𝑖𝑣(𝜌𝜔𝑈) = 𝑑𝑖𝑣 [(𝜇 +

𝜇𝑡

𝜎𝜔
)  𝑔𝑟𝑎𝑑(𝜔)] + 𝛾1 [2𝜌𝑠𝑖𝑗 ∙ 𝑠𝑖𝑗 −

2

3
𝜌𝜔

𝛿𝑢𝑖

𝛿𝑥𝑗
𝛿𝑖𝑗] − 𝛽1𝜌𝜔2 (14) 

)                          

                   (𝐼)           (𝐼𝐼)                      (𝐼𝐼𝐼)                                          (𝐼𝑉)                           (𝑉) 
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As in the transport equation of 𝜀 (equation 10), the terms (𝐼𝐼𝐼), (𝐼𝑉) and (𝑉) of equations 13 and 

14 respectively represent the transport by diffusion, the rate of production and the rate of dissipation 

of 𝑘 and 𝜔. The model is composed of five closure coefficients, i.e., 𝜎𝑘, 𝜎𝜔, 𝛽∗, 𝛽1 and 𝛾1, that are 

assumed constant and are calibrated based on experimental observations for decaying, homogeneous, 

isotropic turbulence to satisfy the law of the wall, i.e., the linear variation of velocity with the 

logarithm of distance from the surface [9][26][34].  

The formulation, as presented, integrates the equations down to the wall (through the viscous 

sublayer) and obtains the turbulent scales without the need of wall-damping functions, further 

contributing to the stability of the model [31]. In this regard, it has been proven that both the standard 

version and the LRN one, achieve similarly accurate results for a set of conducted tests [35]. A set of 

conditions have also been set in the model to avoid non-physical results at the near-wall grid point 

including the assumption of 𝑘 as zero and the forced fulfilment of the analytical solution of equation 

14 for 𝜔 [36].  

 

𝜔 =
6𝜇

𝜌𝛽1𝑦2
 

 

(14) 

 

This allows the model to show improved accuracy for cases with attached boundary layers in adverse 

pressure gradients, compressible boundary layers and free shear flows, and to provide better results 

for the simulation of transition with the pertinent modifications [34][37]. The model also performs 

significantly better than the 𝑘 − ε model under adverse pressure gradients. Unfortunately, its results 

tend to be highly sensitive to the assumed free-stream value of ω and this shortcoming constraints its 

application for the study of external aerodynamics cases [31][36].  

In Menter [31], efforts were made to overcome this limitation that resulted in the development 

of the Base Line (BSL) model and the further improved Shear-Stress-Transport (SST) model. The 

SST model leverages some of the features of both 𝑘 − ω and 𝑘 − ε models, which ultimately result 

in the same robustness of the standard 𝑘 − ω model with a small added computational cost. To 

perform with one set of equations, the model considers a modified version of the 𝑘 − ε model that 

transforms it into a 𝑘 − ω formulation. At its core, the formulation benefits from the better 

performance of the 𝑘 − ε model in the free stream to accurately treat the region away from the wall, 

while the improved capabilities of the 𝑘 − ω model in the near-wall region provide a better 

description of the boundary layer.  

A blending function is used to smooth the transition between the two models as the distance from 

the wall increases. In this case the function i) tends to one at the wall, ii) tends to zero at the farfield 

and iii) transitions at around half the distance between these two points, and does it without user 

interaction or a priori knowledge of the flowfield. This approach allows the model to achieve a similar 

performance to the standard 𝑘 − ω model in boundary layers subjected to adverse pressure gradients, 

without the dependency on free-stream conditions and has shown to be identical to the 𝑘 − ε when 

dealing with free shear layers. The BSL model was found to predict poorly the separation region of 

cases with severe adverse pressure gradients which motivated further modifications to the model and 

gave the impetus for the development of the SST version [31]. The SST version further accounts for 

the transport of the principal turbulent shear stress and does it through a modified definition of the 

eddy viscosity in the BSL model, which assumes a proportional relation between the shear stress and 

the turbulent kinetic energy. The model also uses closure coefficients that are computed by blending 

the corresponding constants of the 𝑘 − ε  and the 𝑘 − ω models and have been refined from 

experience [38][39].   

The 𝑘 − ω SST model has ultimately led to significant improvements in the prediction of 

boundary layer flows under adverse pressure gradients and has been successfully used not only for 

aerodynamics applications such as the analysis of complete aircraft configurations but also as part of 

improved DES formulations given its improved separation prediction capabilities [39].  
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3.2.4 Reynolds Stress Transport Models 

 

Despite the considerable performance improvement achieved by two-equation EVM‘s in a wide 

range of case studies, this type of model still demonstrate limitations in cases involving curved walls 

and swirling flows. The errors are attributed to the additional interactions between the mean strain 

rate and the Reynolds stresses produced in these flows, and the inherent inability of these models to 

correctly predict the resultant anisotropy of the normal Reynolds stresses, given the assumption of 

turbulence isotropy made by the Boussinesq approximation [25][27]. A way to rectify this limitation 

relies on the use of higher-order closures that allow a more accurate description of the features of 

turbulent flows such as the Reynolds stress equation models (RSM)[40]  

At its core, the method includes a set of six exact transport equations for the Reynolds Stresses 

themselves (three normal and three shearing stresses), which allow to account for their directional 

effects, i.e. anisotropy, and have the form presented in equation 15. 

 

 

 
𝛿𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

𝛿𝑡
+ 𝐶𝑖𝑗 = 𝑃𝑖𝑗 + 𝐷𝑖𝑗 − 𝜀𝑖𝑗 + 𝛱𝑖𝑗 + 𝛺𝑖𝑗 (15) 

 

 

Equation 15 keeps the form of the transport equations included in the formulation of two-

equation EVM’s, with the terms 𝑃𝑖𝑗, 𝐷𝑖𝑗 and 𝜀𝑖𝑗 representing the rate of production, and transport by 

diffusion and dissipation of the Reynolds stresses, but includes two new physical processes: the 

pressure strain interaction term (𝛱𝑖𝑗) and the rotation term (𝛺𝑖𝑗). 

 The transport equations as presented are not closed, and the method requires models for 𝐷𝑖𝑗, 𝜀𝑖𝑗 

and 𝛱𝑖𝑗, expressed in terms of known or determinable quantities, to close the system [25]. In Launder 

et al. [41] the formulation of a series of models that achieve this are presented, and only their general 

approximations will be mentioned next for the sake of simplicity.    

The diffusion term is processed based on the assumption that the rate of transport of Reynolds 

stresses by diffusion is proportional to the gradients of Reynolds stresses, as part of the Generalised 

Gradient Diffusion Hypothesis (GGDH), given by equation 16, 

  

 

𝐷𝑖𝑗 =  𝑑𝑖𝑣 (
𝜇𝑡

𝜌𝜎𝑘
𝑔𝑟𝑎𝑑(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)) 

(16) 

 

  

with 𝜎𝑘 = 1 and 𝜇𝑡 usually taken as equation 11. The dissipation rate is typically modelled using 

equation 17, with the assumption of isotropy in the small dissipative scales at high Reynolds numbers. 

  

  

𝜀𝑖𝑗 =  
2

3
𝜀𝛿𝑖𝑗 

(17) 

 

 

In this case, the term 𝜀𝑖𝑗 is applied to only affect the normal Reynolds stresses by using the 

Kronecker delta and introduces an additional transport equation for the dissipation of kinetic energy 

(𝜀) which is commonly equal to the one from the standard 𝑘 − ε model in equation 10 [9][25].  

Finally, the pressure strain interaction is usually decomposed into two terms that account for the 

two physical processes in which it influences the Reynolds stresses: 1) the mutual interaction between 

turbulent eddies and 2) the interaction between turbulent fluctuations and the mean flow strain [41]. 
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The first one is known as “slow” and reduces anisotropy of the eddies while the second mechanism 

is called “rapid” and is responsible for the formation of eddies that oppose the production of 

anisotropy from turbulent eddies. These processes help redistribute the energy between the normal 

Reynolds stresses to make them more isotropic and reduce the Reynolds shear stresses.  

Altogether, in the RSM method, seven transport equations are solved that include six for the 

Reynolds stresses and one for the dissipation rate. Regardless of the added complexity, this type of 

model is generally considered as the “simplest” that allows a complete description of both the mean 

flow properties and the Reynolds stresses without a case by case adjustment. 

When compared against the 𝑘 − ε model, the method has shown improved predictions in 

aerospace applications with more accurate predictions of the onset of separation. However, it is not 

as widely validated or used in industry due to its added complexity and computational cost. The model 

can also show similar limitations to the 𝑘 − ε model, given the transport equation of ε in its 

formulation [9].  

 

 

3.3 The Computational Mesh & Mesh Adaption 
 

The computational meshes for test cases 1, 2 and 4 were structured, whilst that for test case 3 

was hybrid†1 (unstructured with embedded structured prismatic cells in a layer close to the wall to 

capture the boundary layer). Figure 4 presents a schematic representation of the computational flow 

domain with the principle boundary conditions applied to each boundary surface except the far-field 

outer boundary which, for the benefit of clarity, is not shown. The model is for only half of the flow 

field with a symmetry plane imposed on the basis that at the angles of attack being computed, the 

experimentally measured flow field is symmetric about the y = 0 plane, passing through the centre of 

the body. 

 
Figure 4: The structured meshing strategy. 

 

A symmetry boundary condition was applied to the upper and lower symmetry surfaces (shown 

in green), while the body surface and an extended rear surface behaving like a sting geometry were 

given an adiabatic (no heat transfer) wall boundary condition. The sting extension, which was not 

 
1 The test campaign for the transonic test case (case 3 here) was performed as part of a separate study and has been 

included in this investigation due to its relevance. 
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intended to match the actual sting configuration in the wind tunnel test, was added to ensure that the 

boundary condition on the outflow plane (shown in blue) - a pressure outflow boundary formulation, 

was far behind the forebody. This was deemed necessary because the actual pressure field on this 

plane would not be constant. The residual shock wave and, to a lesser extent, the body wake will 

impose pressure variations across the outflow plane, so locating this at least one body length 

downstream will ensure that, for the transonic case in particular, the upstream influence of this 

relatively minor error does not significantly affect the flow solution in the locality of the body itself. 

For the structured meshes an axially symmetric line boundary condition was applied the line 

emanating upstream of the nose tip, which represents a collapsed surface and requires special 

mathematical treatment to correctly compute the flow in this region. In the case of the unstructured 

mesh, this requirement does not exist. The outer flow boundary, which is not shown in figure 4, used 

a non-reflective transmissive boundary condition in the case of the supersonic flow cases, and a 

pressure far-field boundary condition for the subsonic test case (case 3). The outer flow boundary 

was located at a distance from the body at which the influence of the body would be negligible. For 

the supersonic cases this means ensuring that the nose shock wave is well within the outer boundary 

at all angle of attack conditions of interest (see figure 3). For the subsonic test case, this meant locating 

the outer boundary at a minimum of 10x the body length away from the body surface due to that fact 

that in subsonic high Mach number flow, the influence of a body can extend a considerable distance. 

For all four test cases a mesh sensitivity study was performed. Table 2 presents details of the 

mesh density details, where the finest mesh was found to provide mesh converged (forces and 

moments convergence to four significant figures, and convergence of the surface pressure distribution 

to within Cp ~ ±0.0005) in all cases. For all meshes, the first cell height adjacent to the body surface 

as set at 1x10-5 times the afterbody cross-sectional diameter, D, as previous studies have shown that 

this gives a wall y+ value of the order of 1 across the body surface, except the region very close to the 

nose tip, where the experimental boundary layers are laminar in reality. 

Once the converged result was obtained on the finest mesh, this was then further refined using 

feature adaptive mesh refinement and the solution continued until convergence was re-established on 

this adapted mesh. This refinement was done using pressure gradient (greater than 200 Pa/m) as the 

refinement metric, such that refinement was focussed across the shock wave, and in the vortices. 

Figure 5 presents, for test case 1 at zero angle of attack, the final refined mesh on the upper symmetry 

plane as an example, and the corresponding density contours demonstrating the sharpness with which 

the nose shock wave is resolved. 

 

 

 

Table 2: Mesh size details (* indicates the cell count before any mesh adaption). 

 

 

 

 

 

 

 

Mesh Axial 

cells 

Radial 

cells 

Circumferential 

cells 

Prismatic 

layers 

Total cell 

count 

Structured coarse 90 45 45 - 182,250 

Structured intermediate 1 90 90 90 - 729,000 

Structured intermediate 2 120 90 90 - 972,000 

Structured fine 120 120 120 - 1,728,000 

Hybrid coarse - - - 15 1,105,384* 

Hybrid intermediate - - - 20 1,369,153* 

Hybrid fine - - - 20 1,643,123* 
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Figure 5: Example adapted mesh and corresponding computed density contours, M=2.0. =0o, 

ReD=1.2x106.  
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4. Results 
 

4.1 B2, M=2.0,  = 0o Test Case 
 

Test case 1 is the  = 0o B2 test case, which is therefore axisymmetric. The grid for this case was 

also axisymmetric, although it was recognised that a 2D plane could have been more efficiently 

computed with the axisymmetric formulation of the flow equations. The results using either approach, 

however, would be identical. Figure 6 presents a comparison of the experimentally measured surface 

pressure distribution with those obtained from two eddy viscosity turbulence models, the Reynolds 

Stress model and also the two scale resolving methods – Scale Adaptive Simulation and Detached 

Eddy Simulation. For this zero incidence case, where there is no boundary layer separation at all, it 

is seen that all turbulence methods have been equally successful in capturing the surface pressure 

levels across the body, and by inference the pressure drag contribution, to within the limits of 

experimental accuracy. 

Figure 7 presents the comparison, with the experimentally measured value, of the predicted axial 

force coefficient, CA , which for this case is equivalent to the drag coefficient, obtained using all of 

the turbulence approaches tested. Since the pressure contribution to this force is likely to be accurately 

resolved by each method, the differences seen here are entirely due to the resolution of the surface 

skin friction contribution – that is, the resolution of the turbulence boundary layers along the body. 

The three methods which seem to most successfully (within the limits of experimental accuracy) are 

the k- SST turbulence model and the Scale Adaptive and Detached Eddy Simulation methods. What 

is a surprise, perhaps, is that the Reynolds Stress Model overpredicts the axial force by about 15%, 

whereas the zero order Baldwin – Lomax model overpredicts by only 5%. None of the turbulence 

methods underpredict the axial force coefficient. 

 

 
 

Figure 6: Comparison of measured and predicted surface Cp. B2, M=2.0, =0o, ReD=1.2x106. 
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Figure 7: Comparison of measured and predicted axial force coefficient. B2, M=2.0, =0o, 

ReD=1.2x106. 
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a) x/D = 3 

 

     
b) x/D = 5 

 

     
c) x/D = 7 

 

Figure 8:  Comparison of measured and computed boundary layer profiles, B2,  = 0o, M=2.0, 

ReD=1.2x106. 
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d) x/D = 9 

 

     
e) x/D = 12 

 

Figure 8:  Comparison of measured and computed boundary layer profiles, B2,  = 0o, M=2.0, 

ReD=1.2x106 (concluded). 
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4.2 B2, M=2.0,  = 10o Test Case 
 

At 10o angle of attack in a Mach 2.0 airflow the boundary layer which forms on the windward 

side of the B2 body will experience a growing adverse pressure gradient as it passes onto the leeward 

side. The boundary layer will therefore undergo crossflow separation from a three-dimensional 

separation line on the smooth windward surface of the body. At  = 10o, the experimental results 

showed that the consequent vortices developed in a steady, symmetric pattern as shown in figure 1. 

For these conditions the steady RANS approximation and a symmetric half model with symmetry 

plane boundary conditions will therefore be valid. 

Figures 9, 10 and 11 present the comparison between the experimentally measured total pressure 

contours and those computed using the different turbulence methods, in crossflow (y-z) planes at x/D 

= 5, 7 and 9 respectively. Figures 12, 13 and 14 then present the corresponding comparisons of local 

Mach number at the same planes, while figures 15, 16 and 17 do the same for the contours of local 

flow angle. The comparison of the total pressure contours in the crossflow station x/D = 5 is presented 

in figure 9. The experimentally measured contours are at the top left-hand side. In this plot it is seen 

that the data does not extend out radially beyond 0.8D. This is due to the size of the extent of the 

traverse of for the 5 hole probe used in the experiment. The data does, however, extend almost all the 

way to the model surface. At this axial location there is seen to be a boundary layer separation at 

around  = 110o, but the shear layer has not yet rolled up to form a fully developed vortex. All of the 

turbulence methods tested appear the have resolve the flow structure correctly, with only minor 

differences in the size and structure of the separated flow prior to primary reattachment on the 

windward symmetry plane. In particular there are differences in the size and level of the suction 

region within the separated shear layer. The Baldwin-Lomax / Degani-Schiff model appears to be the 

least able to resolve this low pressure region, while the standard k- model seems to be too dissipative 

at the edge of the boundary layer and separated shear layer. The method which most closely 

approximates the experimental measurements is the k- Realizable model. All of the other two-

equation turbulence models, except the standard k- model, and the unsteady higher fidelity models 

provide reasonably accurate predictions compared with the experimental result.  

At x/D = 7, presented in figure 10, the experimental measurement shows that by this station the 

shear layer is rolled up into a vortex, though not necessarily fully developed. There is also evidence 

of a secondary separation and associated vortex that sits under the primary vortex. None of the 

numerical predictions resolved a distinct primary vortex core seen in the experimental measurement, 

or any significant secondary separation and associated secondary vortex. This suggests that either the 

turbulent dissipation is too high in all of these turbulence models and simulation approaches, or the 

experimental flow is sensitive to the initial region of laminar flow that exists up to x/D=0.5, where 

the transition strip is located. If this laminar boundary layer in the experimental flow undergoes 

separation before this fixing location, transition will occur in the shear layer, and the downstream 

vortex will have the structure and strength of a full turbulent flow. Without further information, 

however, this must remain speculation. The overall size and shape of the forming primary vortex is 

reasonably well captured by all turbulence methods, except perhaps the standard k- model which, 

again, appears to dissipate the vortex edge. 

Further downstream at x/D=9, presented in figure 11, the experimental total pressure contours 

reveal a fully developed primary vortex and a small secondary vortex between the primary feeding 

sheet (shear layer) and the primary vortex. At this station there is seen to be a considerable level of 

difference in the resolution of the leeside vortical flow. All of the numerically predicted primary 

vortices do exhibit a distinct core, and all successfully resolve a secondary separation below the 

primary vortex, but only a few resolve a significant secondary vortex. While the experimentally 

measured primary vortex was very circular in structure, that evolved using the Baldwin-Lomax based 

model appears to be more elliptic and unrepresentative of the experimental vortex, but the method 

does successfully resolve the secondary vortex in the right place and strength. The Spalart-Allmaras 

and standard k- models predict a primary vortex that is more circular, but have cores of much less 

strength (suction level) than seen in experiment. Of the eddy viscosity turbulent models the best, in 
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terms of resolving a primary and secondary vortex that is closest in structure and strength to that 

measured in experiment, seem to be the k– Realizable and RNG turbulence models. Both resolved 

flow fields have near circular primary vortices with distinct cores of about the right suction level, and 

with a distinct “tongue” of airflow swept under the primary vortex which has almost a freestream 

level of total pressure. Of the higher order simulation methods, the Detached Eddy Simulation (DES) 

and the Scale Adaptive Simulation (SAS) predicted flowfield seems to be the closest to that measured 

experimentally. The SAS prediction gives a slightly smaller vortex, while the DES prediction slightly 

larger. 

The comparison of the contours of local Mach number at the plane x/D=5, which is plotted in 

figure 12, confirms that while there is a primary separation, the separated shear layer has not yet fully 

rolled up to form a vortex at this station. All of the turbulence methods seem to have captured the 

local Mach number of the flow well enough, with some minor differences between each other and 

with the experimental contours. Excessive dissipation at the edge of the shear layer is evident in the 

result from the standard k- model, which is consistent with the evidence from the total pressure 

contours. Further downstream at x/D = 7 (figure 13) the local Mach number contours reveal an 

evolving primary vortex. Of the steady, eddy viscosity models the k- SST model and the RNG and 

Realizable k- models appear to provide the closest match with the experimentally measured Mach 

number contours. The Solution Adaptive Simulation result is the best result from the unsteady 

simulation methods, but none of the turbulence methods sufficiently resolves the penetration, under 

the primary vortex, of the flow swept in from the leeside freestream. At the rear measurement station 

(figure 14) the experimental Mach number contours display a very circular primary vortex structure 

and a considerable penetration into the shear layer, and roll up, of high speed air induced from the 

freestream by the vortex. None of the turbulence methods successfully resolve the subtle details of 

this flow structure, but the closest match appears to be with the two modified k- based models and 

with Solution Adaptive Simulation and Detached Eddy Simulation. 

The comparisons for local flow angle are plotted in figures 15 – 17. At x/D = 5, presented in figure 

15, shows evidence of a small reverse flow region close to the leeside body surface where there is a 

sheet of what seems to be highly sheared flow (where the flow angle gradient from positive (yellow) 

to negative (blue) is very pronounced. None of the numerically predicted gradients of the flow angle 

in this region are captured with the same steepness as seen in the experimental measurement. The 

Baldwin-Lomax model with the Degani-Schiff modification fails to capture the flow curvature on the 

windward side of the body that all of the other turbulent methods appear to resolve. In the x/D = 7 

plane (figure 16), the evolving vortex is now evident in the experimentally measured flow field, much 

more than is evident in any of the numerical predictions. Again, while the numerical prediction 

successfully capture the general trends in the flow and generally the right magnitudes of flow angles 

the agreement between the turbulence methods (apart from the Baldwin-Lomax zero equation 

method) agree better with themselves that with the experimental measurement in many subtle ways, 

particularly in the resolution of the detail in the region of the evolving leeside vortex. The agreement 

between experiment and the CFD solutions appears to be better at station x/D = 9 (figure 17). All of 

the numerical turbulence methods successfully resolve a fully formed leeside primary vortex, albeit 

with differences in the shape, location and local flow angle in the core. None of the numerical methods 

agree in the detail of the flow angle distribution in the separated shear layer or, in particular, in the 

region above the primary vortex. In general all of the turbulence methods, with the exception of the 

zero-equation B-L model, resolve the core of the primary vortex too close to the windward symmetry 

plane when compared with the experimental measurement. When comparing the contours of the local 

flow angle, there does not appear to be any particular “best” turbulence method.  
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Figure 9: Comparison of total pressure ratio, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=5 
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Figure 10: Comparison of total pressure ratio, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=7 
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Figure 11: Comparison of total pressure ratio, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=9 
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Figure 12: Comparison of local Mach number, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=5 
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Figure 13: Comparison of local Mach number, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=7 
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Figure 14: Comparison of local Mach number, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=9 
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Figure 15: Comparison of local flow angle, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=5 
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Figure 16: Comparison of local flow angle, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=7 
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Figure 17: Comparison of local flow angle, B2,  = 10o, M=2.00, ReD=1.2x106, x/D=9 
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The comparison between the experimentally measured surface pressure distributions on the body 

and those obtained by numerical prediction are, perhaps, more informative than the crossflow contour 

plots because the differences between the methods are more apparent. These comparisons are 

presented in figure 18, for five axial stations from x/D = 3 at the junction of the ogival nose and the 

cylinder, where the flow begins to over-expand, to x/D = 12, and plot the Cp distribution in terms of 

the circumferential angle,  , from the windward symmetry plane ( = 0o) to the leeward symmetry 

plane ( = 180o). The left hand plot for each axial station, the RANS turbulence models are compared 

with the experimental data, while the separate, right hand plot presents the corresponding comparison 

for the scale resolving methods for improved clarity. 

At the first axial station, x/D = 3, there is a considerable difference in the magnitude of the 

measured pressures at a given  angle, and those numerically predicted such that it appears that there 

is a pressure offset. All of the numerically predicted Cp curves are practically identical on the 

windward surface, and only two causes for this significant discrepancy can be suggested. Either the 

Navier-Stokes solution has not properly resolved the expanding supersonic flow in this region 

properly or there is some discrepancy in the published experimental data for this axial station. The 

excellent agreement between the experimental measured and the CFD resolved surface pressures for 

the zero angle of attack case, which used exactly the same gird / solution methodology as this case, 

tends to suggest the latter cause. 

Despite this it is clear that all of the Navier-Stokes solutions successfully resolved the correct shape 

and relative magnitude of Cp at this station, with differences visible in the leeside surface pressures. 

Neither experiment or CFD pressure curves show any indication of any plateau, indicative of large 

scale separation, or any leeside vortex suction. At station x/D = 5, the agreement between the 

experimentally measured Cp and the numerically predicted values on the leeside are now, as expected, 

very good and certainly within the limits of experimental accuracy. On the leeside of the experimental 

pressure distribution a pronounced inversion and a shallow suction peak is seen, caused by the 

proximity to the surface of the core of the forming primary vortex, as shown in figure 9. While all of 

the CFD methods successfully resolved a crossflow separation, and the corresponding inversion in 

the leeside Cp distribution, none of them were able to resolve the depth of the suction measured in the 

experiment. The Baldwin-Lomax based solution failed to capture the steepness of the leeside adverse 

pressure gradient immediately after the flow passes around the shoulder of the body ( = 90o), while 

the k- Realizable model, failed to capture the magnitude of the peak suction at the shoulder as seen 

in the experimental measurement, although it performed best in resolving the primary vortex suction. 

The turbulence methods which provided the best agreement with the experimentally measured data 

at this station appear to be the k- SST turbulence model, and Scale Adaptive Simulation, although 

the other scale resolving methods provide almost as good a match. 

At x/D = 7, the experimentally measured Cp curve exhibits a very strong primary vortex suction 

peak, which has a peak suction almost to the level of that at the body shoulder. There is also evidence 

of a Cp inversion at  = 135o, which is associated with a small secondary separation evidenced in 

figure 9. There is considerable difference between the turbulence methods in the resolution of the 

peak suction at the shoulder, and that due to the primary leeside vortex. The Baldwin-Lomax / Degani-

Schiff model is seen to be the worst at overpredicting the expansion of the flow around the body 

shoulder, while the k- Realizable model is seen to be the worst at underpredicting this expansion. 

Perhaps the best overall match with the experimental Cp at this station is the k- RNG model, but even 

in this case the level of peak vortex suction, from the plateau level before the peak, is only half that 

measured in experiment. None of the CFD methods were able to properly resolve the depth of this 

vortex suction. 

The same is not true at the next axial station, x/D = 9, where the agreement between the 

experimentally measured Cp curve and those obtained by numerical calculation are much better. 

There is still some scatter in the CFD predictions in the regions of the body shoulder and in the 

primary vortex suction, but the resolution of the peak vortex suction is now much better captured by 

all methods. Figure 10 shows that at this station, the vortex is now fully formed. The best agreement 

with experimental data at this station are achieved with the k- Realizable and RNG models, and the 
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scale resolving simulation methods, particularly the Scale Adaptive Simulation method. The 

Baldwin-Lomax / Degani-Schiff, Spalart-Allmaras and the k- models perform the least well here. 

At the most rearward measurement station, x/D = 12, the measured Cp distribution shows that the 

primary vortex peak has collapsed to a very small level, a phenomenon which is successfully resolved 

by all of the turbulent Navier-Stokes CFD methods. Scrutiny of the CFD solutions shows that this is 

due to the leeward convection vortex core away from the body surface, and not due to any vortex 

breakdown. There is some discrepancy between the CFD resolved Cp curves on the windward body 

surface and those measured in the experiment, but generally this within the limits of experimental 

accuracy. There is much closer agreement between all of the numerically predicted Cp curves at this 

station, but the best agreement with the experimental data is achieved by the same methods that were 

found to be the best at the previous station. 

These surface pressure distributions, both experimentally measured and CFD predicted, can be 

integrated around the body circumference to provide the axial distribution of the local normal force. 

These integrated distributions are plotted in figure 19, with the comparison of the RANS turbulence 

models with experiment plotted on the left and the corresponding comparison for the scale resolving 

methods plotted on the right-hand side. The result shows that all CFD methods predict the 

contribution of the nose to the total normal force relatively accurately, though they all agree in 

underpredicting the experimental peak local normal force by about 10%, though this may be a 

combination of the accuracy of the experimental pressure measurements and the numerical 

integration method used. On the afterbody there is seen to be considerable differences in the resolution 

of the local normal force contribution between the different CFD turbulence methods. The Spalart-

Allmaras model appears to underpredict the local CN the most, while the k- Realizable and RNG 

turbulence models give curves that pass very much through the experimental data, and actually 

outperform the scale resolving methods. 

The comparison of the experimentally measured, and computationally predicted normal force and 

axial force coefficients are presented in figure 20, as bar charts. The experimental figure is plotted as 

a green bar with the result extended across as a straight line for comparison with the data for the 

computational methods. For the normal force coefficient, all of the CFD turbulence methods except 

the standard k- turbulence model underpredict the measured normal force. All of the methods give 

predicted CN to within 15% of the measured value, with the most accurate result generated using the 

k- Realizable turbulence model which gave a result only 3% below the experimental value. For the 

axial force coefficient comparison, similarly plotted, all of the CFD turbulence methods overpredicted 

the experimentally measured result. Given that this parameter is usually the most challenging to 

predict, since a significant proportion of the force is derived from surface skin friction, the fact that 

all but the standard k- turbulence model predict this to within 8% of the measured value, which itself 

has an accuracy of 5%, is an impressive result. Paradoxically, the best prediction comes from the 

method with the least physical modelling fidelity – the Baldwin-Lomax zero equation method. This 

is almost certainly a fluke. The next best comparisons come from the k- SST turbulence model, and 

the Scale Adaptive Simulation and Detached Eddy Simulation methods, which predict CA to within 

5% of the experimental result. 
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a) x/D = 3 

 

  
b) x/D = 5 

 

   
c) x/D = 7 

 

Figure 18: Comparison of circumferential surface Cp distribution, B2,  = 10o, M=2.0, 

ReD=1.2x106. RANS predictions (left), and scale resolving predictions (right). 
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d) x/D = 9 

 

   
e) x/D = 12 

 

 

Figure 18: Comparison of circumferential surface Cp distribution, B2,  = 10o, M=2.0, 

ReD=1.2x106 (concluded). RANS predictions (left), and scale resolving predictions (right). 
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Figure 19: Comparison of local normal force distribution, B2,  = 10o, M=2.0, ReD=1.2x106.  

RANS predictions (left), and scale resolving predictions (right). 
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a) Normal force coefficient, CN. 

 

 

 
 

b) Axial force coefficient, CA. 

 

Figure 20: Comparison of measured and predicted force and moment characteristics, B2,  = 10o, 

M=2.0, ReD=1.2x106. 
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4.3 B1A, M=0.7,  = 14o Test Case 
 

 

For this subsonic Mach 0.7 B1A body case, employing a hybrid meshing strategy the CFD results 

are compared with the corresponding experimental measurements in figures 21 -23. Here the same 

grid sensitivity assessment was performed as with the structured mesh B2 studies presented in 

sections 4.1 and 4.2, to ensure mesh independent results. Figure 21 presents the comparison at a 

crossflow plane at x/D = 8.5 of the total pressure ratio contours, between the experimentally measured 

data, in the top left corner, and the results obtained with the turbulent Navier-Stokes methods. What 

is noticed is that the experimental pitot measurements were acquired only in the leeward sector of the 

flow field from  = 120o to the leeward symmetry plane, focussing on resolving the leeside vortical 

flow features. Also, it is seen that the pitot measurements do not extend all the way to the surface of 

the body, which is denoted by the black circular line to aid in interpreting the data. The vortex at this 

axial station is seen to be fully developed with a well defined central core of low pressure air and a 

distinct “tongue” of freestream air swept in under it. While all of the computational methods are seen 

to have successfully resolved a strong leeside primary vortex, not all of them provide accurate vortex 

structure, size, position and strength. The worst prediction, in comparison with the experimental flow 

field, is seen to be that obtained using the standard k- turbulence model which predicts a vortex that 

is too large and elongated, with no distinct core and appears too dissipated. The standard k- model 

also gives a primary vortex which is somewhat elongated and diffuse, with no distinct core, while the 

Spalart-Allmaras turbulence model result is similar although it does capture a vortex core has a shape 

closer to that seen in the experiment. The other RANS turbulence models provide predicted leeside 

vortices much closer to the measured one, with distinct cores and much better shape and position. 

The best overall prediction would seem to be obtained using Scale Adaptive simulation which also 

resolves the tongue of freestream air swept under the primary vortex. 

 These findings are reproduced in the corresponding comparisons for the axial station x/D =  11.5, 

presented in figure 22. Here the measured primary vortex is seen to have grown more elliptic in shape 

as it has evolved downstream, but still retains a distinct core of low pressure air. The same conclusions 

can be derived here as were stated for the previous axial station, though the predictions which best 

match the experimental contours here are that obtained using the k- Realizable turbulence model and 

Scale Adaptive Simulation. 

The experimentally measured and numerically predicted surface pressure distributions are 

compared in figure 23 for five axial stations from x/D=3.5 to 11.5 in the same way as in figure 18 for 

the B2 supersonic case. The measured surface pressure distribution at x/D = 3.5 exhibits an inflexion 

at around  = 140o which is due to a crossflow separation, which forms a separation bubble prior to 

it breaking down to form a streamwise vortex further downstream. All of the turbulent CFD methods 

successfully resolve this feature to some degree of accuracy. The peak suction at the shoulder of the 

body is well resolved by all of the methods except the Baldwin-Lomax based zero-equation model, 

which significantly overpredicts suction. All of the other methods slightly underpredict this suction, 

with all but the result of the k- model being within the limits of experimental accuracy. These 

numerical curves, it will be noticed, are not quite as smooth as those obtained on structured grids for 

the B2 case, but the quality of the predictions are generally equivalent. The most accurate results, 

compared with the experimentally measured data, were generated using the k- SST and k- RNG 

turbulence models and with the Scale Adaptive simulation and Detached Eddy Simulation methods. 

At the next axial station along, x/D = 5.5, the experimental data reveals very strong primary vortex 

suction around  = 160o which, like the similar case for the B2 body is not well resolved by any of 

the CFD methods. It seems that the early smooth surface separation and early evolution of the primary 

leeside vortex is not well captured by any of the CFD methods, even those scale resolving methods 

that involve the most physical fidelity. It is clear that the Baldwin-Lomax / Degani-Schiff turbulence 

model performs poorly here, and this is the case for all of the axial stations compared for this subsonic 

test flow. Of the RANS turbulence models, only the k- Realizable and RNG models successfully 

resolve a vortex suction peak at this station, and even then these are far weaker than that measured in 
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experiment. The solutions obtained by the higher fidelity simulation methods were not much better, 

though that for Scale Adaptive Simulation was marginally the best of all of the methods and captured 

a suction of about half the strength measured in experiment. A similar finding is seen in the results at 

x/D = 7.5, where the experimentally measured vortex suction is much reduced, as the primary vortex 

convects upwards away from the surface. Again, only the k- Realizable and RNG models out of all 

the RANS models, successfully resolve a vortex suction peak while the Solution Adaptive Simulation 

method provides the closest match with experiment, with a very close match in primary vortex suction 

level.  

While all of the turbulence methods perform better further downstream, at stations x/D = 9.5 and 

11.5, as the vortex suction diminishes and the pressure plateaus out, the same turbulence methods 

appear to give the best match with experiment - the k- Realizable and RNG RANS models and 

Solution Adaptive Simulation, which seem to be consistently the best for this smooth surface 

separation subsonic flow. 

 

  



41 

 

    
 

    
 

   
 

Figure 21: Comparison of total pressure ratio, B1A,  = 14o, M=0.7, ReD=0.67x106, x/D=8.5 
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Figure 22: Comparison of total pressure ratio, B1A,  = 14o, M=0.7, ReD=0.67x106, x/D=11.5 
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a) x/D=3.5 

 

       
b) x/D=5.5 

 

        
c) x/D=7.5 

 

Figure 23: Comparison of circumferential surface Cp distribution, B1A,  = 14o, M=0.7, 

ReD=0.67x106. RANS predictions (left), and scale resolving predictions (right). 
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d) x/D=9.5 

 

         
e) x/D=11/5 

 

Figure 23: Comparison of circumferential surface Cp distribution, B1A,  = 14o, M=0.7, 

ReD=0.67x106 (concluded). RANS predictions (left), and scale resolving predictions (right). 
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They also correctly resolve its shape, but not necessarily its strength. The zero equation Baldwin-

Lomax / Degani-Schiff turbulence model does a remarkably good job in resolving the embedded 

shock wave, but the primary vortex is captured further inboard, closer to the leeside symmetry plane, 

than is indicated in the experimental measurement. The k- turbulence model also predicts a primary 

vortex too inboard, but also resolves a much weaker embedded shock feature that fails to match the 

strength of that measured in experiment. The vortex predicted using the Spalart-Allmaras model is, 

perhaps, slightly larger than that measured in experiment, as is that obtained with the standard k- 

model, while the other turbulence models provide much better predictions of both the primary vortex 

and its associated embedded shock. 

While the Reynolds Stress Model and Solution Adaptive Simulation provide a good prediction of 

the primary vortex, the embedded shock strength appears weaker than seen in the experiment, or in 

the solutions from the best RANS turbulence models, and appear inferior to the result obtained using 

Detached Eddy Simulation at this axial station. 

At station x/D = 11.5, plotted in figure 25, the primary vortex is seen to have grown considerably, 

and convected further leeward, away from the body. The experimental measurement does not display 

any evidence of an embedded shock wave, but all of the computational predictions, except that 

obtained with the standard k- model, agree in showing that this shock exists further leeward, outside 

the region where the measurements were taken. In fact the computational evidence suggests that this 

embedded shock is still strong enough at this downstream station to fix primary separation, though 

they disagree on the resolution of its strength. All of the computation predictions successfully 

captured the larger primary vortex, although the standard k- model resolves an unphysically 

distorted vortex that does not resemble that measured in the experiment. The other turbulence 

methods resolve a broadly accurate vortex in terms of shape, location and size, but differ in the 

resolution of the core strength. The best matches with experiment, in terms of the vortex resolution, 

are achieved with the k- Realizable and RNG models, and with Solution Adaptive Simulation, 

although these disagree in the resolution of the embedded shock strength. Without experimental total 

pressure measurement data that reveals this shock, however, it is impossible from this data to say 

which method is best. 

A better comparative analysis can, perhaps, be made by scrutiny of the surface pressure 

measurements and predictions. Figure 26 presents the comparison of the experimentally measured 

and computationally resolved surface Cp distributions at five axial stations on the body. Here, the 

comparisons for the RANS turbulence models are plotted on the left, separately to those for the higher 

fidelity simulation methods which are plotted, for improved clarity, on the right. What is immediately 

clear from this figure is that the standard k- turbulence model fails to resolve the correct surface 

pressure on the windward side of the body, whereas the corresponding pressures for all other methods 

agree very well, and are much closer to the experimentally measure surface pressures. This, and all 

of the other discrepancies seen with this turbulence model, may well be associated with the initial 

prescription of  on the farstream boundaries, which is a known problem with this turbulence model. 

Without a-priori knowledge of this property, it is difficult to see how this model can be safely used 

for this application. The other turbulence methods differ in the resolution of the position and strength 

of the embedded shock, which is observed as the sudden jump in Cp following the smooth windward 

trend in surface suction. They also differ in the resolution of the subsequent primary and secondary 

vortex suctions. At x/D=3.5, the embedded shock wave is seen to be very weak, and here all of the 

methods do a good job in resolving, within the limits of the experimental accuracy, the pressure 

recovery under the evolving primary vortex. Further downstream at x/D=5.5 the embedded shock 

wave is much stronger, resulting in a pressure plateau and a strong primary vortex suction which 

results in a suction level even stronger than the peak seen before the shock wave. All of the turbulence 

methods broadly resolve the same Cp trends, but the Baldwin-Lomax based model and the k-  

Realizable model both predict an embedded shock too leeward of that measured in experiment, and 

primary vortex suction that is too weak. Of the RANS turbulence models, the best results at this 

station were provided by the k- RNG model and the k- SST model, while the best of the higher 

order methods was Solution Adaptive Simulation. 
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At x/D=7.5 all of the turbulence methods overpredict primary vortex suction, and also resolve a 

strong inboard secondary vortex suction that does not appear in the experimental measurement. The 

Reynolds Stress Model result appears particularly poor in the resolution of the vortex suctions, which 

may be a result of the time averaging used to provide this result, whereby the time sample may not 

have been long enough. The time sampling for all of the time accurate simulation methods were 

identical, however. There does not appear to be a clear “best” of the RANS turbulence models, since 

one may provide a better prediction of the location and strength of the embedded shock, but over 

predict the vortex suctions, while another gives better prediction of the vortex suctions, but resolves 

the shock wave poorer. Overall the Solution Adaptive Simulation technique provides the best 

prediction of all the methods, with a reasonably accurate prediction of the embedded shock pressure, 

and the closest match with the pressure plateau and weak primary suction peak seen in the 

experimental measurements. 

Much the same can be said of the surface Cp predictions at downstream stations x/D = 9.5 and 

11.5, where the experimental measurements show that the effect of the primary vortex, which has 

convected into the leeside flow away from the body surface, is minimal and a pressure plateau exists 

from  = 90o to 180o. The most accurate prediction of all the methods is provided by Solution 

Adaptive Simulation. 

Force balance measurements were taken for this test case, and comparisons of the converged forces 

and moments for the RANS predictions, and of the time averaged forces and moments for the higher 

order time accurate simulations, can be made. Figure 27 presents the bar chart comparisons for normal 

force, axial force and pitching moment (about the nose) coefficients together with the axial centre of 

pressure location. Again the left hand green column shows the experimentally measured value with a 

corresponding line extending along the plot for ease of comparison. For the normal force coefficient, 

CN , the two best predictions are from the Baldwin-Lomax / Degani-Schiff model, and the Solution 

Adaptive Simulation method, both of which predict a figure within 2-3% of the experimental value. 

For the case of the Balwin-Lomax based model this is probably more of a fluke, as the comparisons 

for surface pressure and vortex and shock flow structure are not consistently good, as is the case with 

the Solution Adaptive simulations. The result from the k- SST, k- Realizable and k- RNG 

turbulence models, which are within about 4% of the experimental value, are almost as accurate. The 

standard k- model, however, gives a significant over prediction of the normal force coefficient, 

totally unacceptable for any engineering application. For the axial force coefficient, CA , which is the 

most sensitive to the accurate prediction of the boundary layers, the closest predictions to the 

experimental value were found to be from the Baldwin-Lomax / Degani-Schiff model, the k- SST 

model and from Solution Adaptive Simulation all of which, remarkably, provided predictions to 

within 2% of the measured value. Both the Spalart-Allmaras and the k- Realizable result were within 

3-4% of the measured value. Interestingly neither the Reynolds Stress Model nor Detached Eddy 

Simulation provided as accurate predictions of these forces as the above mentioned methods, which 

is somewhat counter intuitive and needs some investigation. The standard k- model, again, 

compared poorly with all the other methods, giving a ~20% overprediction in CA. 

The pitching moment coefficient, CM , about the nose (x/D = 0), is a function of the distribution of 

force along the body and so is highly sensitive to the evolution of the vortices along the body, and 

their associated leeside suctions. For this parameter all of the turbulence method underpredicted the 

experimentally measured value except for the standard k- model, which overpredicted CM by over 

20%. The closest predictions were provided by the Baldwin-Lomax / Degani-Schiff and the k- RNG 

turbulence models and the Solution Adaptive Simulation method, which gave CM to within 3% of the 

experimentally measured value. The result from the k- SST and k- Realizable models were also 

very close, to within 5% of the measured value. For the accurate resolution of the axial centre of 

pressure the  k- SST model gave by far the closest prediction to the experimental value, being within 

0.2% of the measured value. The standard k- and k- Realizable models and Solution Adaptive 

Simulation provided results that were within 1% of the experimental figure. Given that the 

experimental accuracy could probably be quoted to be within 2% of the quoted figure, all four of 
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these turbulence models could be regarded as equally accurate. The standard k- model gave a 

consistently poor prediction – overpredicting CM by over 20%. 

Overall for this test case the Solution Adaptive Simulation method appears to have most 

consistently predicted the overall flow structure of the leeside primary vortex and its associated 

embedded shock wave, together with the most accurate predictions of the surface pressure distribution 

along the body and the corresponding overall forces and moments. Of the RANS turbulence models, 

the k- Realizable and k- SST models provided the most accurate results, but were not as 

consistently accurate as Solution Adaptive Simulation. 
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Figure 24: Comparison of total pressure ratio, B1A,  = 14o, M=2.50, ReD=1.123x106, x/D=5.5 
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Figure 25: Comparison of total pressure ratio, B1A,  = 14o, M=2.50, ReD=1.123x106, x/D=11.5 
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x/D = 3.5 

    
x/D = 5.5 

     
x/D = 7.5 

 

Figure 26: Comparison of circumferential surface Cp distribution, B1A,  = 14o, M=2.50, 

ReD=1.123x106. RANS predictions (left), and scale resolving predictions (right). 
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x/D = 9.5 

 
 

x/D = 11.5 

 

Figure 26: Comparison of circumferential surface Cp distribution, B1A,  = 14o, M=2.50, 

ReD=1.123x106 (concluded). RANS predictions (left), and scale resolving predictions (right). 
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a) Normal force coefficient, CN. 

 

 
 

b) Axial force coefficient, CA. 

 

Figure 27: Comparison of measured and predicted force and moment characteristics, B1A,  = 

14o, M=2.50, ReD=1.123x106. 
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c) Pitching moment about the nose, CM. 

 

 
 

d) Centre of pressure location from the nose, xcp. 

 

Figure 27: Comparison of measured and predicted force and moment characteristics, B1A,  = 

14o, M=2.50, ReD=1.123x106(concluded). 
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5. Conclusions 
 

The systematic comparison of the main modern turbulence prediction methods for the solution of the 

Navier-Stokes equations for the calculation of high speed flows about slender forebodies at low to 

moderate angle of attack, and where smooth surface turbulent boundary layer separation results in 

steady symmetric leeside vortices, has shown that: 

 

• The method which most consistently provides accurate predictions of the overall forces and 

moments on the body, the most accurate distribution of surface pressure and can most 
accurately resolve the flow features, including leeside vortices and embedded shock wave 

features, is the Solution Adaptive Simulation method. 

 

• Detached Eddy Simulation and the Reynold Stress Model, which would be expected to 

provide superior accuracy over the RANS based linear eddy viscosity models, on the whole 

failed to provide better predictions. In fact, the k- Realizable turbulence model and the k- 

SST turbulence model provided data which what almost as consistently accurate as the 

Solution Adaptive Simulation method. 

 

• The standard k- turbulence model appears to be completely unsuitable for the computation 

of this class of high speed flow problem, and this may be associated with the poor initial / 

default prescription of the value of  at the far-field boundary. A separate systematic study of 

this turbulence model for this application is recommended to provide a definitive answer to 

this question. 
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