Algorithm 1: SNC-SIMP for two objectives. The main passages of the algorithm are presented. The optimised points are generated iteratively by the MultiSimp function or by OptiStruct.

// Generate the m reference points by solving the corresponding SOPs. 1 for $i \leftarrow 1$ to m do **2** $\{\mu_i\} \leftarrow \text{j-th anchor point solution of SOP.}$ // Anchor points are normalised. $\mathbf{3} \ \bar{\mu}_j = \frac{\mu_j - \min \mu_j}{\max \mu_j - \min \mu_j}$ 4 $\bar{\mu} = \{\bar{\mu}_1, \dots, \bar{\mu}_m\}$ // Calculate utopia vectors. 5 $N_j = \bar{\mu}_j - \bar{\mu}_m$ // Assign PIT region parameters. 6 $a \leftarrow \{a_1, \ldots, a_m\}$ p = 0.4// Generate N evenly spaced approximation points associated to each anchor point. **8** $\alpha = linspace(0, 1, N)$ **9** $\{U_i\} = \sum_{j=1}^{m} \alpha_i \bar{\mu}_j \quad \forall i = 1, \dots, N$ 10 while $\{U_i\}$ is not empty do // Call SmartDistance function to calculate the smart distances between anchor points and approximation points and select the approximation point with the largest smart distance. $\{s\} \leftarrow SmartDistance(\bar{\mu}, a, p)$ $\mathbf{11}$ // Select the two approximation points adjacent to U_{ℓ} . $X_{p1} = U_{\ell-1}$ 1213 $X_{p2} = U_{\ell+1}$ // Call MultiSimp function to solve the SOP associated to the point U_ℓ and subject to the additional normal constraints. The MultiSimp function is replaced with a call to OptiStruct for the case of the wing model. $\{\mu_p\} = MultiSimp(N_j, \bar{\mu}, X_{p1}, X_{p2})$ 14 if μ_p is optimal then 1516 $\mu \leftarrow \{\mu, \mu_p\}$ // Remove the approximation point used at this iteration and restart. $\{U_i\} \leftarrow (U_i \setminus U_\ell)$ 17

Algorithm 2: MultiSimp function to solve SOP subject to normal constraints. This pseudocode describes only the normal constraints associated to the bi-objective problem described in this work.

Input: $(N_{j}, \bar{\mu}, X_{p1}, X_{p2})$ **Output:** $\mu_p, \bar{\mu}_p$ 1 while $change > tol \land iter < maxiter do$ // Calculate non-dimensional compliance $ar{C}$ and first eigenfrequencies $\bar{\omega}_1$. $\mu_p \leftarrow \{C, \omega_1\};$ $\mathbf{2}$ // Update constraint vector. 3 g(x) = $(X_{p1}(2) - \bar{\omega}_1) + (\bar{C} - X_{p1}(1)), (\bar{\omega}_1 - X_{p2}(2)) + (X_{p2}(1) - \bar{C});$ // Call mmasub function. See relative documentation for input arguments. $x_{new} = mmasub(x, f, df dx, g, dg dx);$ $\mathbf{4}$ $change = x - x_{new}$ $\mathbf{5}$