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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 73 (2018) 108–113

2212-8271 © 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 10th CIRP Conference on Industrial Product-Service Systems.
10.1016/j.procir.2018.03.301

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2018) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

2212-8271 © 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 10th CIRP Conference on Industrial Product-Service Systems. 

10th CIRP Conference on Industrial Product-Service Systems, IPS2 2018, 29-31 May 2018, Linköping, 
Sweden 

Identifying challenges in quantifying uncertainty: case study in infrared 
thermography 

 Alex Grenyera*, Sri Addepallia, Yifan Zhaoa, Luke Oakeya, John A. Erkoyuncua, Rajkumar Roya 
aThrough-life Engineering Services Centre, Cranfield University, Cranfield, MK43 0AL, UK 

* Corresponding author. Tel.: +44-1234-75-8555; fax: +44-1234-75-8292. E-mail address: a.h.grenyer@cranfield.ac.uk 

Abstract 

Complex engineering systems present a wealth of uncertainties concerning aspects ranging from performance measurements to 
maintainability and through-life characteristics. A quantifiable understanding of these uncertainties is vital to system optimisation 
and plays a key role in decision-making processes for manufacturing organisations worldwide; impacting profit, product 
availability and manufacturing efficiency. The aim of this paper is to examine challenges and complications that arise when 
quantifying uncertainties in complex engineering systems that rely on expert opinion. A thermographic inspection system is utilised 
as a use case. Contractor-client and supervisor-maintainer relationships are examined. Key challenges highlighted involve accurate 
depiction of error margins and corresponding uncertainties of components where data is only heuristically obtainable, as well as 
the influence of environmental conditions and skill of the maintainer. 
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1. Introduction 

Assessment methodologies of statistical uncertainties are 
well documented, but the quantification of technical 
uncertainties determined by expert opinion (heuristic) in the 
context of complex engineering systems (CES) is broadly 
overlooked. This paper examines a use case where 
measurement data is obtained from subsystem components to 
determine statistical measurement uncertainties. These are then 
combined with relevant heuristic components for each 
subsystem, which are in turn combined to obtain an estimate for 
the total uncertainty of the system. 

Rapid digitalisation and connectivity is creating 
opportunities in IPS2. This paper considers digitalisation in the 
context of the use case, which can aid in the evaluation of 
component health. 

When considering the maintenance of CES, this approach 
raises more questions than answers. Once statistical uncertainty 
estimates are obtained from recorded data, it is necessary to also 
question the way in which these recordings were made, their 

accuracy and how such approaches may differ in various 
operating conditions. The complexity in answering these 
questions emanates largely from the fact that the decisions 
made for one component or subsystem can have unforeseen 
effects on others in the CES. An example of one such system is 
the maintainer. The degree of uncertainty associated with the 
maintainer’s discretion in the quality of maintenance carried out 
is significant due to the number of variables that may influence 
such decisions; such as training level, measurement quality and 
environmental conditions. 

Industrial Product-Service Systems (IPS2 ) are the result of 
the rapidly changing nature of industrial service provision 
whereby a client may interact with a product in their possession, 
but not take ownership [1]. Maintenance responsibilities are 
therefore shifted back to the product provider (contractor), who 
must manage varying customer requirements and adhere to a 
defined level of quality and time constraints. These service 
contracts are increasing in scale and complexity, now 
accommodating highly complex and dynamic systems. 
Operational life cycles of such systems promote extensive 
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relationships between the contractor and client. The 
availability, reliability and maintainability of these systems and 
equipment is therefore essential in logistical contracts and 
through-life support services. Some significant maintenance 
technologies that support these services are non-destructive 
testing (NDT) and degradation assessment, repair and remote 
maintenance that sustain maintenance activities [1,2]. These 
should therefore be profitable to the contactor, but also ensure 
supply chain sustainability and customer affordability [3]. 

The approach to a specific maintenance task by a contracted 
maintainer may differ from that of the client’s maintainer on the 
same task. Decisions made here raise several heuristic 
uncertainties from both sides that are naturally problematic to 
quantify. Contributing factors such as those mentioned above 
will impact the quality of work carried out. A clear picture of 
both heuristic uncertainties from the maintainer’s perspective 
and statistical uncertainties from recorded data will aid decision 
making process for cost-effective maintenance planning. 

The aim of this paper is to examine challenges that arise 
when quantifying heuristic uncertainties in the maintenance 
context of CES, considering the dynamic nature of system 
requirements over time and the effect these may have on the 
through-life maintainability of CES from the perspective of 
IPS2. 

2. Literature review 

2.1. What is uncertainty? 

Uncertainty is the difference in the amount of information 
that is required to perform a task and the amount of information 
already possessed [4–6].  The relevance of information, or lack 
of information, should be specified concerning the functionality 
of the organisation or application in question [7]. Grote [4] 
discussed these distinctions in a broad sense of incomplete 
information, inadequate understanding of existing information 
and undifferentiated response alternatives [8]. Uncertainty is 
caused by variability in the environment, human error and/or 
human ambiguity and can result in a negative, positive or 
neutral impact on the overall performance [9]. 

The terms ‘error’ and ‘uncertainty’ are often used 
interchangeably. It is important to differentiate these concepts. 
A statistical error is the (unknown) difference between the 
measured value and true value, following probability 
distributions. Measurement uncertainty is the lack of 
information about the magnitude of these errors. The degree of 
uncertainty associated with a measurement can be utilised to aid 
decision making.  

2.2. Types of uncertainty 

There are two key types of uncertainty estimate; Type A, 
which are sourced from standard deviations of statistical data, 
and Type B, which are obtained from heuristic estimates [8]. 
Such estimations should be distributed to assess their validity.  

Uncertainties can be further defined as aleatory and 
epistemic, although accurate allocation of these terms for a 
given variable of either uncertainty type is largely dependent on 
the measurement model [10]. Epistemic uncertainties are those 
that could be known in principal, but are not known in practice 
[11,12]. This may be due to inaccurate measurements or the 
measurement model neglecting certain characteristics. 

Epistemic uncertainties can, therefore, be reduced by obtaining 
more data or by refining models. Aleatory uncertainties, on the 
other hand, cannot be reduced as they represent variables that 
differ each time a given experiment is carried out [11–15]. 

This distinction is largely necessary to identify where 
uncertainty can be reduced. Failure to accurately distinguish 
between these types of uncertainty may result in 
underestimation or overestimation of the probability of failure 
in a system, which could have significant knock-on effects [10].  

2.3. Uncertainty analysis 

NASA [8] published a document based on general rules and 
recommendations given by the Guide to the Expression of 
Uncertainty Measurement (GUM) [6]. The measurement 
process should be clearly described to provide information and 
clarity about the measured quantity (measurand). This should 
include measurement set up, equipment used, environmental 
conditions during measurement, and the procedure used to 
obtain the measurement. This can then be used to identify 
sources of error and uncertainty [8,16]. 

The core uncertainty analysis procedure defined by the 
GUM involves five key steps: define the measurand, identify 
error sources and distributions, estimate uncertainties, combine 
uncertainties, report analysis results. Once the error sources 
have been identified, appropriate statistical distributions are 
selected to characterise the nature of measurement errors, 
which are quantified by standard deviation. 

2.4. Uncertainty estimation methods 

Statistical uncertainty quantification (UQ) for measured data 
can be achieved through a variety of documented methods, the 
most apparent of which are Monte Carlo, Bayesian, Latin 
Hypercube and Kalman filtering. 

Helton and Davis [17] examined Monte Carlo simulation 
methods along with Latin hypercube sampling in uncertainty 
analysis for complex systems. Latin hypercube sampling 
generates a sample of parameter values from a 
multidimensional distribution. It is often used alongside Monte 
Carlo simulation. 

Monte Carlo simulation is stated to provide the most 
effective approach to the propagation and analysis of 
uncertainty in many situations for various combinations [17]. It 
allows extensive sampling of uncertainty ranges for individual 
variables to be achieved without the use of surrogate models 
[17]. Analytical procedures can be developed that allow the 
propagation of results through systems of linked models [16].  

Bayesian analysis is a statistical process that answers 
questions regarding unknown parameters through probability 
distributions. NASA [8] describes Bayesian analysis as a 
method for deriving and expressing the probability of an event 
occurring given that a prior event has occurred as a probabilistic 
function of the two events occurring independently or together. 
This process is a core part of determining measurement 
accuracy, decision risks and calibration processes.   

Kalman filtering is an algorithmic process that observes 
measurements over a set timeframe, allowing educated 
estimations to be made about a dynamic system [18]. These 
measurements can include statistical variances, inaccuracies, 
and unknown variables. The algorithm uses aspects of Bayesian 
analyses to estimate joint probability distributions in each 
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timeframe. Kalman filters are used in a range of fields including 
navigation, signal processing and robotics [18]. 

Monte Carlo simulation is the most diverse and adaptable 
method of the four discussed here, so will be used in this study 
to inform statistical validation of the variables obtained to 
estimate component uncertainties. 

2.5. How does uncertainty effect IPS2? 

Service cost assessments for the support of long-term 
projects is a challenge shrouded in uncertainty owing to the 
variable nature of such services and unpredictable changes in 
customer requirements [19,20]. Further uncertainties are found 
in highly variable equipment usage rates, lack of information to 
make accurate forecasts, importance of creating the right 
incentives around long-term maintenance and accurately 
predicting schedules [21]. These uncertainties present an 
inherent degree of risk to IPS2, which can be utilised as a 
measure of future uncertainties in achieving performance 
within defined cost, schedule and performance constraints. 

Erkoyuncu et al. [22] examined cost estimation 
methodologies at the bidding stage for IPS2 from a number of 
sources.. The resulting Uncertainty Tool for Assessment and 
Simulation of Cost (U-TASC) was based on an amalgamation 
of various standard qualitative and quantitative methodologies. 
The challenge of incorporating heuristic qualitative 
assessments in the in-service phase of IPS2 in a manner that can 
be incorporated with quantitative estimates was highlighted. 

2.6. Research gaps 

Ideally methods to quantify the compound effects of 
different types of uncertainties would exist to capture their full 
system impact. Modern CES feature a range of subsystems 
interacting simultaneously and nonlinearly with each other and 
the environment on multiple levels that create challenges to 
UQ, resulting in over or under estimation. 

NASA [8] covered an approach to quantify system 
uncertainty, but approaches that support the system of system 
perspective to UQ are lacking. That is, a system in which 
individual components in uncertain states with levels of 
importance dependent on operational condition and system 
environment, represented in context by CES. UQ relating to 
IPS2 is still a relatively new field of research. The scientific 
determination of Type B (heuristic) uncertainties and their 
effect on aggregated system of system uncertainty is necessary 
to capture their full system impact. 

Maintenance and modelling techniques are well versed in 
literature, with clear benefits different approaches for varying 
applications. Overall, there is a lack of guidance in literature to 
quantify compound uncertainties in CES when considering 
heuristic attributes. 

3. Use case: Thermography system demonstrator 

The use case for this paper considered a conventional pulsed 
thermography system as described by Zhao et al [23] to 
demonstrate the challenges in compound UQ considering 
heuristic and statistical variables. This system consisted of four 
core subsystems; an Infrared (IR) camera, flash box, composite 
sample of known emissivity and data processing computer (Fig 
1). Each subsystem consisted of its own inherent mix of 

uncertainties. This made it a relatively simple system of system 
setup compared to those utilised in modern CES and IPS2, but 
presented much the same challenges faced in operational 
environments for UQ. For example, the positioning of the 
camera, movement of the sample and operator bias are assumed 
to be uniform throughout the experiment with negligible error 
margins. However, these error limits, and therefore the breadth 
of uncertainty, can vary significantly in real-world 
environments where, for example, varying atmospheric 
temperatures or windspeeds will impact the accuracy of 
recorded data or of the subjective opinion of a maintainer.  
Operating conditions will have further impacts, for example 
cramped spaces or working at heights. 

Optical flash thermography is a Non-Destructive Testing 
(NDT) process in which a sample is heated by a very brief, 
uniform pulse of light from a flash box. The IR camera monitors 
sample surface temperature response over time to the thermal 
impulse. The transient heat flow is obstructed in areas of the 
sample closest to a wall or unintentional defect, causing a local 
increase in temperature at the surface [24]. This process can be 
used in several conditions to identify defects and in a variety of 
materials. 

 
Fig 1. Setup diagram with uncertainty in thermography system 

3.1. Identification of uncertainties 

The combined uncertainty resulting from measured data and 
heuristic estimates from each module was considered to 
quantify the compound system of system uncertainty. 

The measurand was the digital level of the reconstructed 
temperature decay profile from the IR camera. The intensity is 
a dimensionless true value obtained from polynomial fitting. 
Components of each module were subject to a degree of error 
that, directly or indirectly, influenced the compound 
uncertainty of the measurand. These uncertainty sources are 
displayed in Table 1. 

3.2. Experimental procedure 

The sample was placed in a pre-built mount on a level bench 
and positioned in parallel with the flash box and camera. The 
sample was introduced and removed from its mount between 
ten repetitions using a pair of tongs with rubber handles to 
simulate positional uncertainty associated with the operator and 
sample positioning. Three trials per repetition were recorded to 
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create a sufficiently large sample size; a total of thirty 
temperature measurement datasets. The same acquisition 
parameters were used for all recordings. Atmospheric 
temperature in Kelvin and humidity were recorded for each of 
the ten runs using a digital thermometer.  

Table 1. Subsystem components and associated uncertainty sources 

Subsystem Uncertainty source Nominal / 
mean value 

Error 
margin 

Probability 
distribution, 
uncertainty 
type 

IR Camera 

Atmospheric T., K 
(Tatm) 294.34 ±0.1 Normal, A 

Humidity, % (ω%) 61 ±0.1 Normal, A 

Distance, m (d) 0.26 ±0.01 Uniform, A 

Intensity reading (Tob) 5.13 ±0.001 Normal, A 

Positioning 0 ±0.001 Uniform, B 

Flash Box 
Flash intensity, % 75 ±0.001 Uniform, B 

Synchronisation, s 0 ±0.001 Uniform, B 

Sample 

Emissivity (εob) 0.85 ±0.02 Uniform, A 

Temperature, K (To) 294.34 ±0.1 Normal, A 

Mount Positioning 0 ±0.001 Uniform, B 

Replacement moving 0 ±0.02 Uniform, B 

Computer 
Operator bias 0 ±0.01 Uniform, B 

Computation error 0 ±0.01 Uniform, B 

To increase accuracy and minimise error in readings from 
each run, the tripod on which the camera sits, sample mount and 
flash box were fixed in the same position for every recording. 
Each data capture was initiated with a single flash at 75% 
power. Recordings were taken at a frame rate of 25Hz, 
recording 1000 frames in 40 seconds. An area region of interest 
(ROI) of 15x15 pixels was used to record a mean value of each 
frame. The resulting thermal image is shown in Fig 1. The 
circular pattern in the centre of the image is a reflection of the 
camera lens. The ROI was taken from an unaffected area to 
avoid the effect of non-uniform heating on the measurement. A 
cooling time of 15mins between each run ensured the sample 
cooled to the optimum working temperature. This assumed that 
atmospheric temperature was equal to sample temperature. 
These measurements would have a different mean value, but 
the same standard deviation and, therefore, the same 
uncertainty. 

3.3. Uncertainty estimation 

To obtain statistically significant assessments of the 
uncertainty in each subsystem component, Monte Carlo 
analysis was used to generate random variables within specified 
error limits. For statistical recordings, the standard deviation of 
the mean of each run was considered equal to the uncertainty in 
the recorded values [8]. 

The component uncertainties of each subsystem were 
combined using sensitivity coefficients and appropriate 
effective degrees of freedom in accordance with the GUM [6,8]. 
Uncertainty estimates for each subsystem were then combined 
using the Root Sum Square (RSS) method [8,22] with a 95% 

confidence level, assuming negligible correlation between the 
subsystems. The results are identified in Table 2. 

Heuristic uncertainty estimates, such as the positioning of 
the camera, movement of the sample and operator bias in the 
computer assume a uniform distribution with a highly 
concentrated mean as the error limits were negligible 
throughout the recordings. However, these error limits, and 
therefore the breadth of aleatory uncertainty, can vary 
significantly with environmental and operating conditions. The 
degree of error from each subsystem component will have a 
notable impact on the resulting system uncertainty. The specific 
effects from these components is detailed in Table 3, along with 
a reiteration of the uncertainty sources for each subsystem and 
their relative uncertainty type. The greater the error margin in 
the recording equipment, such as the digital thermometer, the 
greater the degree of epistemic uncertainty will be. 
Environmental conditions can fluctuate over time, which 
increases aleatory uncertainty in the mean values obtained from 
measurements such as temperature and humidity. Accidental 
adjustments in the positioning of components will alter the 
camera focus, which will result in less accurate readings. This 
kind of error is more likely to have a negative impact in the 
context of real-world CES in uncertain dynamic operating 
conditions. 

Table 2. Subsystem and system combined uncertainty estimates 

Subsystem Subsystem Mean 
Combined Uncertainty 

System Combined 
Uncertainty (RSS) 

IR Camera 0.1203 (12%) 

0.1773 (17.7%) 
Flash Box 0.0014 (0.1%) 
Sample 0.1295 (13%) 
Computer 0.0141 (1.4%) 

4. Identifying industrial challenges in heuristic UQ 

In this laboratory set up, heuristic uncertainty estimation was 
relatively straight forward. In a real-world industrial 
environment, these estimations become considerably more 
complicated owing to additional sources of uncertainty. These 
can range from primary factors such as: subsystem 
interconnectivity, interoperability of the whole system that is 
dependent on subsystems and understanding of the whole 
system of system as a single system – to tertiary factors such 
as: maintainer wellbeing, equipment availability and additional 
environmental factors. These are expanded in the following 
sections. When considering IPS2, the quality of NDT processes 
such as thermographic inspection for maintenance of a given 
component of CES carried out by a contractor may differ 
significantly to that of work carried out by the client.  

The main challenge faced in the use case was accurately 
assessing error margins and corresponding distributions for 
components from which statistical data was not obtainable. The 
degree of error contributed by such components influences the 
uncertainty in the measured value. In a real-life environment, 
these estimations are sourced from expert opinion. Maintenance 
activities are carried out based on such opinions and live or 
historic data. The quality of such data, accuracy of expert 
opinions and environmental conditions all drive the quality of 
maintenance carried out, which drives a highly dynamic level 
of uncertainty.  
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Table 3. Influence of error sources on resulting uncertainties 

Subsystem Uncertainty source Uncertainty 
type (A/B) Influence on compound uncertainty 

IR Camera 

Atmospheric temp. A Greater variations in temp. increase uncertainty in readings 

Humidity A Greater variations in humidity increase uncertainty in readings 

Distance A Changes in distance will move ROI and alter camera focus - keep constant 

Measured reading A Small, constant temperature fluctuations in air result in variations in values per frame 

Positioning B Changes in position and angle will move ROI and alter camera focus - keep constant 

Flash Box 
Flash intensity B Variations in flash intensity will cause changes in sample surface temperature per recording 

Synchronisation B Flash must occur for the first recorded frame to give constant accurate recordings 

Sample 

Emissivity A Sample emissivity is constant - difficult to accurately obtain values for composite materials 

Temperature A Influenced by flash - must be allowed to cool to room temperature before starting next recording 

Mount positioning B Changes in position and angle will move ROI and alter camera focus - keep constant 

Replacement moving B Held in place by mount - changes in position and angle may still occur 

Computer 
Operator bias B Operator may input inaccurate readings or make incorrect measurements 

Computation error B Operator may make incorrect calculations 

4.1. Industrial perspective of challenges faced in UQ for 
maintenance practice 

Four 2-hour interviews have been held with the head of 
support and research and technology manager of a major 
defense contractor. A key aspect discussed was the nature of 
relationships between the contractor and a client in long-term 
IPS2 contracts and how they evolve over time. In many cases, 
the contractor will have their own integrated maintenance and 
delivery teams. Systems often maintained by the original 
equipment manufacturers (OEM), dictated by the contractor. 
The client will operate the given asset and carry out repairs 
where necessary while in operation, whereas the contractor will 
diagnose faults and carry out routine maintenance or larger 
repairs [1,2,25]. A board framework representing the 
relationship between contractor and client is shown in Fig 2. 

 

Fig 2: Contractor-client relationship in IPS2 contracts 

Experience, expertise and training have a momentous 
influence on decision making. Decisions made directly affect 
the quality of maintenance carried out, and therefore drive a 
significant degree of uncertainty that is substantially complex 
to quantify [21,22,2]. Equipment quality may vary for the 
contractor or client, thereby affecting the accuracy of resulting 
measurements. Maintenance regimes used by the contractor or 
client may also differ, therefore holding a greater degree of 
uncertainty. In CES, where a change in uncertainty in one 

system has an unknown impact on another, this issue is 
amplified as different components may be maintained by 
different parties in the same system, which may restrict the 
availability of data about specific components and the impact 
they will have on interlinked systems. 

Insufficient training for a given task, environmental 
conditions and stress levels of the maintainer will further 
impact the quality of maintenance carried out. A supervisor 
should check the maintainer’s work. However, these checks 
may not be carried out effectively, depending on the 
maintainer-supervisor relationship. If the supervisor knows and 
trusts the maintainer, they may not sufficiently check the 
quality of work, despite having a better subjective opinion, 
which can increase the uncertainty of the quality of 
maintenance.  

Stress levels and working conditions further influence this 
uncertainty, as a heightened degree of each will negatively 
impact the quality of maintenance. It is incredibly difficult to 
obtain data on maintainer wellbeing as unions do not like to 
give or authorise the collection of such information. In many 
cases, more attention is given to critical and complex 
components. Non-critical components therefore receive less 
attention. For example, bypass valves could be considered non-
essential until they fail. 

To address these situations, maintenance support systems 
such as DRACAS – Defect Reporting and Corrective Action 
System – are used to report failures and track corrective actions. 
However, the way in which operators may use these systems or 
the way data is handled can further increase uncertainties in 
maintenance practices. Data concerning work carried out may 
not be inputted correctly, or alerts may not be responded to 
appropriately. 

5. Conclusions 

The aim of this paper was to examine challenges that arise 
when quantifying heuristic uncertainties in CES in the context 
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of IPS2, considering training, relationships, environmental 
factors and the effect these may have on the maintainer and 
resulting quality of maintenance. A use case utilising a 
thermographic inspection system was examined to demonstrate 
the challenges of heuristic UQ in CES.  

The key challenge encountered was the accurate depiction of 
error margins and corresponding uncertainties of components 
where data is only obtainable though subjective opinions. 

Maintenance work for assets carried out in IPS2 is often 
conducted by the contractor, as well as a degree of diagnosis 
work, while the client will typically operate and carry out minor 
reactive repairs. For CES, additional support systems are used 
to actively report failures and track corrective actions. 

Maintainers should therefore be well trained in standard 
maintenance procedures, but also capable of executing reactive 
maintenance. A multitude of uncertainties arise here, 
influenced by the working environment and skill of the 
maintainer, as well as equipment availability. 

The use of Monte Carlo simulation to measure the level of 
uncertainty in heuristic attributes within subjective error 
margins addressed the research gap identified in this context, 
but further research is required to establish how such attributes 
may differ, for example, from a manager to a maintainer.  

The level of uncertainty obtained in the use case is relatively 
low, but in the system of system context in CES, which 
encompasses substantially additional interlinked subsystems, 
the challenge of accurately determining the degree to which 
uncertainty in one subsystem will affect another can have 
severe effects on the level of compound uncertainty and, 
therefore, the cost of service provision and performance targets 
in IPS2. The ability to track changes in such uncertainties over 
time will enable far more accurate cost estimations to be made 
for long-term service contracts. 

Future work in this subject area should examine strategies to 
obtain statistically viable data concerning the quality of 
maintenance in dynamic working conditions and asset 
condition, skill of the maintainer and trends in active decision 
making for given reactive, corrective or preventive 
maintenance activities. 
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