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Abstract 

Nuclear Quadrupole Resonance (NQR) and Nuclear Magnetic Resonance (NMR) are spectroscopic 

techniques that offer the ability to characterise samples non-destructively in situ for quality control 

in industrial processes (e.g., water content in food), and for detection of explosives and narcotics in 

defence and security sensing applications. Current NMR-/ NQR-based sensing technologies can 

achieve good performance in a controlled laboratory environment where the effect of external 

Radio Frequency Interference (RFI) can be mitigated by RFI shielding. However, for in situ sensing 

applications outside the laboratory, complete physical shielding is often not possible or not practical 

(heavy, bulky) and therefore alternative methods are needed for NMR-/ NQR-based sensing 

technologies to be useful. 

This EngD project focusses on the development of methods for active elimination of RFI for in situ 

sensing applications of NMR and NQR. The work aims to develop signal processing techniques that 

work with varying degrees of physical suppression (RFI shielding), to improve the accuracy and 

reliability of the NMR-/ NQR-based sensing technologies. The approach being developed is a 

machine learning process in which RFI is automatically identified using a decision tree model 

followed by an RFI suppression algorithm to produce the RFI-minimised signal. 

This talk describes the development of an experimental testbed for data collection and some recent 

results achieved by applying the algorithms to measured NQR data subject to simulated burst mode 

RFI. The performance of the decision tree model is validated against human operator performance 

data, generated by volunteers rating the degree to which they can confidently declare an NQR signal 

present or not in RFI-polluted data. The performance of the model is quantified as a Receiver 

Operating Characteristic (ROC) curve, which plots true positive against false positive for a binary 

classifier. For the data described here, the decision tree model improved (relative to no RFI 

removed) the area under curve (AUC) value from 0.58 to 0.906, where AUC = 1 means a 100% 

detection rate with a 0% false alarm rate. 

1 - Introduction 

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) are spectroscopic 

techniques typically used to characterise materials and processes in a laboratory environment. There 

is a growing demand for in situ sensing applications, with some being already established, such as 

oil-well logging (1) and food processing (2). There are also opportunities where NMR and NQR could 

be used for quality control and assurance in civil engineering applications (3), as well as for security 

screening (4).  

However, making NMR and NQR work in these field applications presents many difficulties because 

of the low operating frequencies (e.g., 1 – 10MHz). In NMR, for a given nucleus (e.g., hydrogen) the 

frequency is defined by the strength of the external magnetic field. In NQR, where there is no 
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external magnetic field, for a given quadrupolar nucleus (e.g., nitrogen) the frequency is defined by 

an internal electric field gradient. In both cases, low frequency means a low signal-to-noise ratio 

(SNR) and spectra that can be dominated by noise. Therefore, noise suppression methods are 

needed.  

The noise can be separated into two types: incoherent noise such as the thermal white noise from 

the NQR/NMR sensor, and coherent noise. The coherent noise can itself be divided into two: internal 

acoustic ringing from the tuned coil after each RF excitation pulse and detected externally broadcast 

Radio Frequency Interference (RFI), such as power supplies or aircraft communications. 

Noise suppression techniques do exist to improve the SNR, for example, acoustic ringing can be 

reduced by appropriate phase cycling in the excitation pulse sequence (5). Thermal noise in the 

tuned coil can be reduced by repeating the experiment and averaging the NMR/NQR signal. 

However, the nature of RFI means that signal averaging and phase cycling are not effective. The RFI 

can also vary greatly from one location to another making suppression challenging.  Other 

suppression techniques, such as using a bandpass filter are not effective because there is a wide 

range of RFI carrier frequencies that can be encountered. Faraday shielding, which attenuates 

external RFI, can increase SNR but is not necessarily suitable for in situ applications. 

Techniques have been developed for suppression of coherent RFI. Garroway et al. (6) developed 

methodology using additional RF coils, identical to the NQR coil, which were placed near to the NQR 

coil and recorded just the background RFI occurring at the same time as the NQR measurement. The 

additional receiver coil data was then used to produce an estimate of the background RFI at the NQR 

site measurement. This was subtracted from the contaminated NQR signal to reveal the true NQR 

signal. A detection rate of 100%, with 0.25% false alarm rate was achieved in detection trials with 

buried landmines. Despite the performance achieved in trials, other technological limitations, as well 

as wider system considerations, meant the NQR sensor was not developed beyond a prototype.   

Tantum et al. (7) developed signal processing based on a least mean squares technique for a single 

NMR/NQR sensor. The authors used this to produce an estimate of the background RFI, and then 

apply a Bayesian discriminant algorithm which extracted the NQR signal from the data. This 

technique produced a detection rate of 85% with a false alarm rate of 15%.  

Shao et al. (8) developed an advanced signal filtering technique called ‘interference-cancelled echo-

train approximation’ designed to target RFI that has a significant fraction of spectral width very close 

to, but not on, the NQR frequency. The technique achieved a detection rate of 95% with a false 

alarm rate of 5%, but the authors used simulated RFI that did not have the spectral complexity of 

measured RFI. The same authors (9) followed up with a modified version of their original technique 

that could cope with more complex RFI, including non-stationary RFI, and achieved a 90% detection 

rate, with 10% false alarm rate.  

An increasing proportion of external RFI is digital in nature and occurs in short bursts. This is 

especially true in RF saturated environments, such as airports. Therefore, this project is working on a 

new and novel approach to use machine learning to treat ‘burst mode’ digital RFI. It aims to remove 

the need for Faraday shielding and attempts to increase the SNR of NMR/NQR experiments to 

improve their detection rate/usability for in-situ applications.  

To address this problem, work was undertaken to characterise real-world background RFI in order to 

better understand how to suppress it. An experimental testbed was created to acquire NQR data as 

well as the ability to control the RFI injected into the NQR data. The testbed data was processed 

using a machine learning based RFI identification method and simple suppression method to 
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produce RFI suppressed data, which was then used in a validation trial using volunteer raters. The 

results from the validation process produced the Area Under the Curve (AUC) value for the ROC 

curves for this RFI suppression method, allowing it to be compared with other RFI suppression 

methods.  

2 – Methodology 

2.1 – RFI Characterisation 

Due to the increase in the adoption of digital technology, a larger proportion of RFI is digital, which is 

usually ‘burst mode’. This means RF signal arrives in groups of pulses, typically mV in amplitude, 

which easily masks the substantially smaller NMR/NQR signal, which are typically µV in amplitude.  

To better understand the RFI, it was characterised to extract key parameters in the following 

manner: 

1 – The recorded RFI is plotted in the time domain, showing the RFI pulses in the raw RF 

signals. 

2 – The RFI is Fourier transformed to obtain the frequency spectrum of the data, to see how 

it overlaps with frequencies used by NMR/NQR equipment and how it varies for different 

locations.  

3 – The RFI is filtered and thresholded using a moving average top hat filter, which made the 

pulses stand out more clearly from the rest of the recording, making them easier to 

threshold. This thresholded data created a binary mask of where the RFI was in each RFI 

recording.  

4 – The binary data is used to calculate multiple different parameters about the RFI, 

including; 

- Average RFI pulse length 

- Average time gap between RFI pulses 

- Percentage of RFI recording that has digital RFI present 

5 – The binary data is put through an autocorrelation function to find repeating patterns 

within the RFI data, which reveal the coherent nature of digital RFI. Peaks in the results 

plotted as a function of time indicate repetition times within the original dataset. 

6 – The RFI at specific frequencies within the RFI recording can be focused on by applying a 

Gaussian filter at the chosen frequency to the Fourier transformed data [frequency domain], 

zeroing out the rest of the Fourier transformed data. This filtered data is then inverse 

Fourier transformed to produce the [time domain] data of the RFI at the specific frequency 

only. This allows comparisons to be made between continuous RF RFI and burst mode RFI 

which all occur at different frequencies within the same overall RFI recording. 

7 – The time-domain data is put through the same autocorrelation function to find repeating 

patterns within the data. This allows the repeating patterns at different frequencies to be 

compared to show the different RFI within the same recording.  
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2.2 – Experimental Testbed 

The testbed comprised the NQR coil and RFI coils in a wooden box covered with EM shielding cloth 

to make the Faraday enclosure. This ensured only the pseudo-RFI was present in the NQR data. 

Sodium nitrite (NaNO2) was used as a sample for development of the method as it has 14N NQR 

frequencies (1, 3.6 and 4.6 MHz) that fit within the range of those found in narcotic and explosive 

materials. The chosen frequency for this testbed was 3.6 MHz. 

This project used the ‘CPMG’ NQR pulse sequence [10], illustrated in Figure 1. This sequence uses 

excitation pulses to create ‘echo’ signals, which decrease in amplitude with each subsequent 

excitation pulse. The echo intensities can be fit to an exponential decay to produce the T2 value of 

the sample, where T2 is a characteristic NMR/ NQR time constant of a material. Experiments were 

repeated 64 times with random pseudo-RFI injected for each repetition. Each repetition is known as 

a ‘scan’. 

Pseudo-RFI was generated using a binary mask of RFI recordings measured at the University of 

Surrey, which contained real-world pulsed RFI. The source of this RFI is likely to be linked to the local 

Gatwick and Heathrow airports. The carrier and sideband frequencies of the pseudo-RFI were 

Gaussian distributed around the NQR frequency, whilst the amplitude and phase were linearly 

distributed.  

The main NQR coil contains the sample, transmits the radio-frequency NQR excitation pulses and 

detects the NQR signals as well as RFI. The sample coil was 14 cm long and 7.8 cm in diameter and 

tuned to 3.6 MHz with a bandwidth of 0.07 MHz. The NQR coil is mounted centrally within the 

enclosure with additional identical coils mounted orthogonally to the NQR coil. These additional coils 

act as receiver coils and record the background RFI that occurs at the same time as the NQR 

experiment. These provide additional recorded data that can be used in future work for different RFI 

suppression techniques.  

The three RFI transmission coils have a height of 5 mm and a diameter of 15 cm. These were 

mounted orthogonal to the NQR coil on the inside of the shielded enclosure equidistant from the 

central NQR coil. The RFI was transmitted using two arbitrary waveform generators (PXIe, National 

Instruments).  

Figure 1 - Illustration of a CPMG pulse experiment, showing the RF pulses (RED) and the NMR/NQR signal (Blue)  
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The NQR excitation pulses were created using a Tecmag Redstone spectrometer, amplified and then 

transmitted by the NQR coil. The resulting NQR signals were detected and processed by the 

Redstone in the traditional way in parallel to all of the raw signals being recorded by an oscilloscope 

card, using an oversampled rate of 10.8 MHz. The cards were all run by a single computer running in 

a National Instruments PXIe chassis. The schematic of the entire testbed system is illustrated in 

Figure 2.  

2.3 – Decision Tree Model  

Development of the machine learning process described here was undertaken as part of a larger 

project (10) and recently reported by Ibrahim et al. (11). Various different machine learning models 

were tested to determine their RFI detection rate for the same training dataset. The results yielded 

detection efficiencies as follows:  K-nearest neighbours (KNN) = 95 %; Support Vector Machine (SVN) 

= 91 %; Decision Tree (DT) = 98.2 %. On the basis of the detection rates the decision tree model was 

adopted. 

Processing the NQR data starts by breaking down each sequence of NQR echoes into individual 

records, which we label as units, illustrated in Figure 3. These units consist of data classes that are 

the excitation pulse, the ringdown from the coil following the pulse, any RFI that may be present, 

and remaining data that is ‘echo’. White noise is also included in the ‘echo’ class because the model 

is only looking to identify RFI that will need to be removed. The decision tree model is trained to 

classify windows of data into one of these four classes: ‘pulse’, ‘ringdown’, ‘RFI’ or ‘echo’. To 

Figure 3 - Illustration of a single unit of data with different components labelled 

Figure 2 - Schematic diagram of the experimental testbed (10) 
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determine the correct class to assign, it uses the values of 27 features which are calculated for each 

window of data. These features include the 75th percentile value of the window of data, the 

maximum frequency, the average of the derivative of the data, the starting time of the window of 

data and the sum of all of the peaks in the data. The window of data comes from a sliding window 

that passes through each unit of data to be processed. Each window is assigned a class value by the 

model, which is used to create a binary mask of all data points which were classified as ‘RFI’.  

The decision tree (DT) model was trained using labelled data recorded with pseudo-RFI. The binary 

masks used to produce the pseudo-RFI were used to label the RFI in the data. Additional binary 

masks were produced that represent where the pulse, ringdown and echo are expected. These are 

produced from the timing parameters of the experiment and are used to label the relevant parts of 

the data. The model used for validation and processing had been trained on over 50,000 units of 

data, where a normal 64 scan experiment will produce 512 units.  

Once all data points have been classified, the data is demodulated using the MATLAB demodulation 

function, with a 10kHz low pass filter applied. At this stage, the data is equivalent to that acquired by 

the spectrometer.  

We suppressed the RFI using a method we termed ‘direct removal’, illustrated in Figure 4. This 

method replaces the identified RFI with the weighted average of data from the same time window 

from other units that had no RFI at that given time.  

The final step is to average the units across all scans of the experiment, accounting for the phase 

cycling through the scans, to produce a final average of the NMR/NQR signal, with the RFI 

suppressed. Figure 5 shows the full process in flowchart form. 

Figure 4 - Illustration of the direct removal RFI suppression method [10] 

Time Window 
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2.4 – Validation of the Decision Tree RFI identification and RFI Direct Removal 

A validation trial using volunteer raters was undertaken to determine the effectiveness of the RFI 

suppression method. The number of scans was varied to quantify the performance (e.g., Area Under 

the ROC Curve value per scan) to allow comparison with other RFI suppression techniques. 

Volunteers were shown ‘good’ NQR data and ‘bad’ non-processed RFI data. They were shown 100 

datasets, of which 90 were random datasets from the entire available collection, and the final 10 

were repeat showings of random datasets from the original 90. The repeating datasets were to see if 

the ratings provided by the same volunteer changed between viewings.  The datasets shown were 

either Processed or Non-Processed by the RFI suppression technique. Specific comparisons were 

made between: 

- Data identification when data only included Pseudo RFI contamination and when it also 

included No-Pseudo RFI in order to check that the method did not make things worse. 

- Varying Sample Weight (0, 50, 100, 150 or 200g NaNO2) to investigate sensitivity. 

- Final averaged signal produced from either 4, 8, 16, 32 or 64 scans in order to find the 

minimum scans required for adequate detection rate. 

The volunteers had to rate each dataset they were shown, from ‘0’ to ‘10’, where ‘0’ means no NQR 

signal definitely seen; ’10’ means NQR signal definitely seen and ‘5’ means could not decide.  

Results from the validation trial were plotted as Receiver Operating Characteristic (ROC) curves. This 

plots true positive declarations against false positive declarations as a method of quantifying the 

detection performance of a binary sensor. To compare different ROC curves, the Area Under the 

Curve (AUC) is calculated, where a value of 1 is 100% detection rate with 0% false alarm whilst a 

value of 0.5 is the equivalent of guessing, such as flipping a coin.  

3 – Results 

3.1 – RFI Characterisation 

To show the variety of RFI present in the environment, RFI was recorded at several locations, 

including: 

- NMR Lab at the University of Surrey; 

- NQR Lab at Dstl; 

- Another indoor location at the University of Surrey away from the NMR laboratory; 

- Outdoor location at the University of Surrey. 

Raw Data

Split into ‘Units’

Apply decision model through a sliding window

Classify each window of data

Create binary mask of RFI in each unit

Demodulate units

Apply RFI removal technique

Average remaining units

Figure 5 - Flowchart of the RFI identification and suppression process 
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Figure 6 shows 500 µs of time-domain data for RFI recorded at the locations listed above. Each 

record reveals the presence of digital pulses, of varying character, at each location. Figure 7 shows 

the spectra (Fourier Transform) of the time domain data shown in Figure 6, with the spectrum of the 

Dstl lab being two orders of magnitude smaller in amplitude. Figure 8 shows the result of the 

autocorrelation function when applied to the binary mask of the data in Figure 6. 

 

 

Figure 7 - Fourier Transform Plots of RFI measured at: A = NMR lab at Surrey, B = NQR lab at Dstl, C = Indoor 
Location at Surrey, D = Outdoors Location at Surrey 

Figure 6 - Plot showing 500 us of raw RFI measured at: A = NMR lab at Surrey, B = NQR lab at Dstl, C = Indoor Location at 
Surrey, D = Outdoor Location at Surrey 
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Figure 9 shows that the autocorrelation for the Indoor recording (Fig. 8c) has minor autocorrelation 

up to the 1 ms. However, when the whole data length is plotted, a repetition time of 10 ms becomes 

clearly visible.  

 

 

 

 

 

 

 

 

 

The final parameters calculated from the binary mask of the RFI are presented in table 1.  

Sample Average RFI Pulse 
Length (µs) 

RFI On Percentage Average gap between 
RFI pulses (µs) 

Lab – Surrey 1.29 25.56 3.75 
Lab – Dstl 2.26 21.49 8.09 
Indoors – Surrey 0.62 3.68 16.31 
Outdoors - Surrey 0.24 3.38 7.12 
Table 1 - RFI parameters calculated for the RFI samples 

A Gaussian filtering technique was applied to the spectrum for the outdoor location (Figure 7d), with 

the Gaussian filter centred on the following frequencies: 1.57, 10.53 and 13.33 MHz.  These 

Figure 8 - Autocorrelation Results, with highlighted repetition times, for RFI measured at: A = NMR lab at Surrey, B = 
NQR lab at Dstl, C = Indoor location at Surrey, D = Outdoors location at Surrey 

62.5µs 

10.2µs 

302.2µs 

Figure 9 - Autocorrelation Results and highlighted repetition time of Indoor RFI for up to 100ms. This 
is plotted as this is the only recording with RFI with a repetition time longer than 1ms 

10ms 

8.5µs 
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frequencies were chosen due to the significant peak at 1.57 and 13.33 MHz, whilst the 10.53 was a 

smaller peak to use as comparison.  

The time-domain data produced by inverse Fourier transforming the filtered spectrum is plotted in 

Figure 10. The autocorrelation for 1.57 and 10.53 MHz is plotted in Figure 11. 

A Gaussian filtering technique was applied to the spectrum for the outdoor location (Figure 7d), with 

the Gaussian filter centred on the following frequencies: 1.57, 10.53 and 13.33MHz. The time-

domain inversed Fourier transformed data of the Gaussian filtered frequency-domain Fourier 

transformed data is plotted in Figure 10. the autocorrelation for 1.57 and 10.53 MHz is plotted in 

Figure 11.  

Figure 10 - Plots of the Inverse Fourier transformed data at the Gaussian filtered selected frequencies (1.57, 10.53 and 13.33 
MHz), based on the FFT of the original outdoor sample in Figure 6 

Figure 11 - Plots of the autocorrelation results for the Inverse Fourier transformed data at the Gaussian filtered selected 
frequencies (1.57 and 10.53 MHz) based on the FFT of the original outdoor sample signal in Figure 6 
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3.2 – Decision Tree Model 

Three datasets were recorded to train and test the effectiveness of the decision tree model. The 

data sets were as follows: 

- Data Set 1 (120 datasets = 51,200 units of data) - Identical NQR parameters with and without 

random pseudo-RFI that was used for training 

- Data Set 2 (40 datasets = 24,576 units of data) - Varying NQR parameters to provide non-

optimal NQR experimental data with and without pseudo-RFI 

- Data Set 3 (200 datasets = 102,400 units of data) - Optimal NQR parameters with and 

without pseudo-RFI, to test the RFI suppression technique without any bias due to sub-

optimal NQR parameters. This data was used in the validation trial. 

Data collected in data series two and three were treated with the decision tree model to identify and 

remove (directly) the RFI. 

The result of the Decision Tree identification and RFI direct removal method is presented in Figure 

12. Figure 12a shows the demodulated and averaged signal for an experiment undertaken with eight 

echoes. The refocusing pulses are seen as white vertical bands that saturate the receiver. The rest of 

the signal is corrupted by RFI, making it unusable. Figure 12b shows the same data but treated with 

the RFI suppression method. The NQR signal is recovered and the sinusoidally-oscillating decaying- 

echoes are clearly seen. 

 

 

 

  

Figure 12 - An averaged and demodulated signal. The red, green, and blue lines represent the real, imaginary, and 
magnitude of the data, respectively: (a) without and (b) with the application of the RFI decision tree identification model 

and removal algorithm [11] 



© Copyright 2019 / University of Surrey 

3.3 – Validation of the DT RFI identification and RFI Direct Removal 

The results from the validation trial are presented in Figure 13, for the number of scans varying from 

4 to 64. The aggregated results (over all scans) are presented in the overall ROC curve.  

 

 

 

Figure 13 - ROC Plots for varying numbers of scans and overall (all of the ratings combined), which are processed by the 
DT RFI Identification and RFI direct removal algorithm (red curve) and not processed (blue curve), the solid lines 
represent results when all of the data contained RFI, dashed lines represent a mixture of RFI and non-RFI data 
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Figure 14 shows the AUC for the ROC curves in Figure 12, which shows a significant improvement in 

AUC values between processed data, which has values typically above 0.8, compared to 0.5 for non-

processed data.  

Figure 15 shows the average score provided by different volunteers for identical data across the 

different categories of data, and for different sample weights and number of scans. These values will 

show how different categories of data affected the average score provided by multiple volunteers, 

with processed data expected to be greater than non-processed data.  

Figure 15 - Average Score for different categories of data, for datasets seen by multiple people, Top Left = Processed Data 
with RFI, Top Right = Non-Processed Data with RFI, Bottom Left = Processed Data without RFI, Bottom Right = Non-

Processed Data without RFI 
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4 – Discussion 

4.1 – RFI Characterisation 

Analysis of the RFI characterisation data shows that any RFI suppression method will need to be able 

to cope with the large variety in RFI. For example, the spectra plotted in Figure 6, shows that the 

range of frequencies encountered can vary widely between locations, whilst 3 out of 4 recordings 

had the same frequency as the NQR frequency of sodium nitrite (3.6 MHz) used in the testbed.  An 

effective suppression method, therefore, needs to cope with RFI at the same frequency as the 

NQR/NMR signal.  

The variety of RFI is clearly visible in the plots shown in Figure 5, where there is repeating digital 

pulses of different lengths and repetition times. There are also repeating bursts of pulses with the 

same structure, as such in Figure 5(c), with the same three pulses repeating. In addition, the 

variability in the autocorrelation results, plotted in Figure 8 and Figure 9, show a wide range of 

repetition times ranging from micro to milliseconds. So, an NQR echo (e.g. 3ms) would record the 

same RFI multiple times within an NQR measurement.   

Furthermore, the RFI parameters calculated for each location, (table 1), show that both laboratories 

have a higher percentage of signal that was digital RFI (25.5%) compared to the indoor location 

(3.7%). This means that in the laboratory, without shielding/suppression, each scan of an NQR 

measurement would have 25% of the NQR signal masked by RFI. In contrast with doing an NQR 

experiment at the indoor location, where each measurement would only have (3%) of the NQR 

signal per scan masked by RFI.     

The difficulty of suppressing RFI is further increased by the variability within the same signal. For 

example, the Gaussian filtered inversed Fourier transformed results, in Figure 10, show that within 

the same sample, you can have digital RFI at some frequencies whilst encountering continuous RF at 

others. In this case, the different RFI have similar repetition times, as seen in the autocorrelation 

results (Figure 11). Dependable SNR improvements will, therefore, need a combination of RFI 

suppression techniques to cope with suppressing both digital RFI and continuous RFI. 

4.2 – Decision Tree Model  

There is a clear improvement moving from the non-processed to processed data (Figure 12), 

demonstrating the effectiveness of the RFI suppression technique. The non-processed data has no 

clear NQR signal, meaning the data is unusable, whereas the processed data clearly shows an NQR 

signal, which can be used to characterise the sample. In this case, the oscillations in the signal show 

the NQR frequency is 2 kHz off-resonance. 

4.3 – Human Validation 

The validation trial results demonstrate that the suppression method improves performance as 

summarised in the ROC curves and AUC values for processed data compared to non-processed data 

(Figure 13). These AUC values show that a high value of 0.89 was achieved using 32 scans, visible in 

Figure 14. Furthermore, the AUC value was not substantially lower for the lowest number of scans 

processed, meaning that it can achieve good results using minimal scans. This is exactly what is 

needed to allow this technique to be used for applications where time is short supply (e.g. scanning 

luggage at an airport). 

Likewise, the average scores for each category of data, plotted in Figure 15, shows that processed 

data with RFI had higher ratings than the non-processed data, and the ratings increase with sample 
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weight and number of scans because the NQR echoes have a greater amplitude. The processed data 

that had no RFI was rated the same as processed with RFI, which means that processing data that 

didn’t need processing doesn’t reduce the average scores achieved.  This means that this method 

does not reduce the NQR signal visibility of NQR data with no RFI. The non-processed data without 

RFI should have the same pattern of results as processed with RFI, but there is an anomaly with the 

50g and 100g results, which are currently under investigation.  

5 – Conclusion 

This project created a new and novel machine learning based method to identify digital burst mode 

RFI and suppress it using a new method of RFI suppression known as ‘direct removal’.  

To better understand the variety of digital burst mode RFI that can be experienced, characterisation 

of RFI recorded in multiple locations was undertaken, and showed its varying complexity. These 

results showed that even laboratories have high levels of external RFI and require experiments to 

have Faraday shielding or RFI suppression techniques. 

An experimental testbed was developed to undertake NQR experiments with controllable pseudo-

RFI without external RFI. The data recorded from this was used to train the decision tree model and 

produce testing data. 

A validation study was undertaken to produce the AUC values for varying number of scans. This was 

to determine the best AUC value of the technique that could be achieved but also to see how the 

number of scans affected the AUC values. The results showed that four scans produced the highest 

AUC per scan, meaning the suppression technique works effectively for time-sensitive applications 

(e.g. scanning luggage at an airport). However, a peak AUC value of 0.89 was achieved with 32 scans, 

perfect for non-time sensitive applications (e.g. research experiments). 

6 – Future Work 

The next step is to develop a new model that works on real RFI, which will involve recording new 

data with real RFI for training and testing.  In addition, a series of blind trials will be conducted to 

determine how the AUC values of the model change as RFI changes over different time scales (days, 

weeks, months).   
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