
GBSAR-Proc
Documentation

James Elgy
Daniel André

Cranfield University
Centre for Electronic Warfare, Information, and Cyber

August 20, 2019

Contents

1 Overview 1

2 Motivation 1

3 Requirements 1

4 Workflow 2

4.1 The Params Class . 2

4.2 Data Loading . 3

4.2.1 File Format . 4

4.2.2 Windowing . 4

4.3 Range Profile Formation . 5

4.4 Backprojection . 5

4.4.1 CUDA Backprojection . 6

4.5 Plotting . 7

5 Matlab Integration 7

5.1 Installation . 8

5.2 Usage . 8

6 Benchmarking 8

7 Considerations and Future Work 9

8 References 10

9 Appendix A - Specimen File Format 10

Contact: James.D.Elgy@Cranfield.ac.uk

i

1 Overview

This package, herein referred to as GBSAR-Proc, is a Python package designed to load and
process data gathered from Cranfield University’s ground based Synthetic Aperture Radar
(SAR) system. Included in the package are a series of classes designed to manipulate raw
data, process it into range profiles and finally use the Backprojection Algorithm to plot high
quality near-field SAR images.

2 Motivation

In the case of volumetric SAR, a three-dimensional volume is formed, as oppose to more
common two-dimensional planar images. As a consequence, significantly more computational
work needs to be performed.

The addition of an extra dimension to the image formation process is, at least in Backpro-
jection, a trivial change from a software perspective. However, the additional number of
elements can cause the image formation to have a duration orders of magnitude longer. To
this end, parallel execution is a practical necessity. In the Matlab programming environ-
ment, parallel processing is relatively easy with regards to the CPU, unfortunately, the GPU
equivalent is not straight forward.

In Matlab, GPU programming is achieved via the gpuArray data type. Many functions in
Matlab, although not all, are designed to accept gpuArray objects as input arguments, and
as such operate on a graphics card. For in-built functions, such as fft and exp, this is
sufficient. However, for more complex and/or custom functions, such as Backprojecton, this
approach begins to become cumbersome and inefficient.

The prevailing advice from Mathworks is to either use arrayfun to execute a single input
function over multiple threads, or to write the program in C and compile the code as a mex

function. However, due to time constraints, a Python based implementation using the well
known scientific NumPy [1] and Numba [2] packages has been written instead. The standard
Python interpreter, CPython, has much of its underlying code written in C, the difference
in execution time between the two languages should therefore be minimal.

3 Requirements

The GBSAR-Proc Python package has few rigid requirements. To make use of the core
functionality NumPy, SciPy, and Numba are required. To make use of less important func-
tionality, such as plotting, Matplotlib and Mayavi are needed.

The Matlab function PythonBP and the Python module MSAR are included as part of the
GBSAR-Proc software. These custom functions are designed to be called from Matlab. To
make use of either one, a 64bit version of Python 3.6 must be installed along with the
packages NumPy and Numba, both of which are required. In addition, one should also
obtain the Parallel Computing Toolbox for Matlab.

1

4 Workflow

4.1 The Params Class

As part of the image formation process, it is necessary to define some parameters ahead of
time. For example, the size of the resultant image or how many pixels to consider. These
attributes are contained within the Params class.

The Params class contains the following attributes:

1. SC

The SC attribute is a NumPy array containing the cartesian coordinates of the scene
centre.

2. Lcr, Lr, and Lel

These attributes are the extent in metres of the imaging window along the X, Y, and
Z axes respectively.

3. CRDensity, RDensity, and ZDensity

These are the pixel spacing in metres for the X, Y, and Z dimensions. Combined with
the window extent, the total number of pixels can be calculated.

4. DynamicRange

This value, in dB, defines intensity threshold for any plotted images. I.e. a value of 30
will give a intensity range of max(Im) ≥ Im ≥ max(Im)− 30.

5. Plot3D

This boolean controls whether the SAR image formation operates in a volumetric or
planar modality. Setting the value to False will cause the image formation and the
plotting routines to generate a two-dimensional image. Setting the value to True will
cause the image formation to generate three-dimensional image.

6. UpsampleFactor

This option controls how much the range profiles are up-sampled by during the forma-
tion process.

7. CableLength

The cable length (m) defines a range by which the range profiles can be uniformly
shifted.

8. GeometryIndex

This attribute defines the ground-truth positions of the antennas. For example, setting
the attribute to 0 generates a monostatic modality, whereas setting it to 3 generates a
fixed receiver and a moving transmitter. This is done via the geometrygrabber switch.

2

9. RadarHeight

The physical height of the SAR system in metres. It sets the origin of the coordinate
frame at O = [0, 0, H].

10. RotationAngle

The angle (deg) of the SAR system with respect to the X axis. For example, setting
the value to 11 degrees will place the system at 11 degrees with respect to the scene.

It is possible to assign each of these attributes individually within a Python environment,
however it is generally easier and more consistant if the actual Params.py file is directly
edited.

4.2 Data Loading

The Data class is the main repository for the manipulation and loading of the raw phase
history data. The loading of the data is handled by the Data.LoadFile() method. Once
this is done, further corrections to the data can be applied.

1. Data.LoadFile()

This function loads the raw data from either a .scn or .cal file. The function works by
searching for specific tags within the file. For example, it will look for ’Positions’ before
reading the line and grabbing the value. It is worth noting that there is no check for
units. I.e. the function assumes that all units of distance are specified in mm before
converting them to m.

2. Data.SubtractMean()

This function subtracts the mean frequency response from each pulse of data. It is
useful for subtracting constant signatures, e.g. DC coupling, from the phase history.

3. Data.SubtractCL(CableLength)

This function applies a phase ramp to Data.RawData such that the time domain rep-
resentation is shifted by CableLength (m).

4. Data.GetGeometry(Params)

This function is designed to calculate and return the cartesian coordinates of a bistatic
pair of antennas. The function queries a switch to obtain ground-truth measurements
for a fixed antenna with respect to the .scn file, this is then used to generate Ant1 and
Ant2, both of which are returned. To add a ground-truth measurement, simply add
to the geometrygrabber switch. This commented switch is located at the bottom of
Data.py.

5. Data.CorrectSC(Params)

This function applies a phase ramp to the raw data such that the ranges to the targets
are with respect to the scene centre coordinate, rather than the antennas.

3

4.2.1 File Format

The format for .scn files should be as follows:

1. The file should have the extension .scn for SAR collections and the extension .cal for
single pulse calibration measurements.

2. The file should have the following parameters in order:

(a) ’Positions’

(b) ”HorizontalAperture’

(c) ’HorizontalStartPosition’

(d) ’HorizontalIncrement’

(e) VerticalAperture’

(f) ’VerticalStartPosition’

(g) ’VerticalIncrement’

(h) ’StartFrequency’

(i) ’StopFrequency’

(j) ’NumberOfPoints’

3. The raw phase history data should be formatted in two columns (Real Imag) and
labeled by a header detailing which pulse. E.g. [Reading1of176].

The Data.LoadFile function is designed specifically for this format and will not work if it
is deviated from.

A specimen file is attached in Appendix A.

4.2.2 Windowing

Within the Data class there is the option to apply window functions over the top of the raw
data. These windows are generated in the Window class using the scipy.signal module.
Window is applied via:

1. Data.ApplyWindow(WinType, Dims=1)

By default this function multiplies the window specified in WinType and the raw data,
Data.RawData, replacing the dataset in the process. The variable Dims specifies how
many dimensions to apply the window. E.g. Dims=2 will apply the window in both
range and cross range.

2. Data.FormDataCube()

This function is called by Data.ApplyWindow to reshape would be 2D SAR collections
into a cube. This makes it significantly easier to apply windows.

4

3. Data.UnFormDataCube()

This function does the opposite of Data.FormDataCube. It takes a 3D representation
of the raw data and converts it back into the 2D representation.

The range of windows that can be applied are defined in the scipy.signal.windows module.

4.3 Range Profile Formation

The range profile formation aspect of the GBSAR-Proc package is handled in the RangeProfiles
class. It requires that the Data and Params classes be passed to it during its construction.

Within the class, the main methods are:

1. RangeProfiles.FormRangeProfiles()

This function converts the raw data into a time domain representation via a Fourier
Transform. The complex phase histroy data is zero padded to a length defined by
Params.UpsampleFactor and circshifted such that the centre frequency is the first
element in the array..

2. RangeProfiles.PlotRangeProfiles()

This is simply a function to plot the range profiles as a 2D image of range verses pulse
number.

3. RangeProfiles.RangeGate(Min, Max)

This function crops the range profiles to a specific range extent. Any value with a
range less than Min or greater that max is scrapped. The result of this function is
smaller range extent and subsequently, a smaller dataset.

4.4 Backprojection

For a single pulse of data, the Backprojection algorithm calculates the bistatic range from
antennas A1 and A2 to the pixel grid. The complex range profile data, RP, is then interpolated
onto this range to produce a projection of the range profile onto the imaging surface. In
SAR this is repeated for each antenna position.

Within the SAR class, there are two methods of performing this Backprojection operation:

1. SAR.BackProjection CPU().

This method runs exclusively on the CPU and returns SAR.ComplexImage.

2. SAR.BackProjection GPU()

This method exports the main work to the GPU, returning SAR.ComplexImage. Conse-
quently, it is significantly more complex and requires the CUDA Toolkit be pre-installed
on the computer.

5

4.4.1 CUDA Backprojection

CUDA is a NVIDIA framework for exporting computational load onto a GPU in order to
leverage the high core count and multi-threading optimisations built into modern graphics
cards. While CUDA is developed and designed for C, it is possible to use Numba to compile
python code into a CUDA compatible format. The general format for doing so is as follows:

Listing 1: Simple CUDA Example

from numba import cuda

@cuda . j i t ()
def CudaKernel (args , var1 , var2)

args = var1 + var2

The cuda.jit function decorator performs a just-in-time compilation of the CudaKernel

function into GPU compatible machine code. Note that CUDA functions cannot return
variables, therefore the desired output, args, must be provided as an input, then overwritten.
While this example is extremely simple, it follows the basic guidelines laid out on the Numba
website [3].

Since all the variables, in this example args, var1, and var2, must be transferred to the
device, it is in the users best interest to transfer as little data as possible, since doing
so takes a significant amount of time. With this in mind, the CUDA implementation of
Backprojection aims to do all the required steps with as little data transfer as possible.

The Host Function transfers the minimum required variables onto the GPU, this includes
the pixel grid, Pixel and an array of zeros that will eventually become the final image. The
final job of the Host Function, before calling the kernel, is to set up the thread hierarchy
alluded to earlier. This is done via the Initalise function.

Listing 2: Initalise Function

def I n i t a l i s e (ims i z e) :
Set the number o f th reads in a b l o c k
threadspe rb lock = 32
Ca lcu l a t e the number o f thread b l o c k s in the g r i d
b l o c k s p e r g r i d = (ims i z e +(threadsperb lock −1))// threadspe rb lock

return (threadsperb lock , b l o c k s p e r g r i d)

The variables threadsperblock and blockspergrid define the so-called thread hierarchy
and must be provided to the kernel when it is called.

With that said, the Backprojection function itself operates as follows: First the imaging grid
is transferred onto the GPU. This could be segmented, however keeping it as one contiguous
array helps to keep the code simple. Next the amount of free memory is queried, and the
range profile data segmented appropriately. Finally, each segment of the range profile data
is sent to the GPU and the Backprojection kernel is executed. The data is transferred in
this way to minimise the number of separate transfers than need to be executed, and thus
improve the execution time

6

4.5 Plotting

Within the SAR class, there are three functions related to plotting and saving the data.

1. SAR.PlotSAR()

This function does not return any variable, however it does produce a plot of the Back-
projected image. 2D planar images require the Matplotlib package, whereas volumetric
images are plotted using Mayavi.

2. SAR.PlotPhase()

A function to plot the spatial frequency support of either 2D or 3D Backprojected
images. The spatial frequency is obtained by performing a N-dimensional Fourier
Transform of the complex image data. As with the SAR.PlotSAR function, planar
images are plotted by Matplotlib and 3D images by Mayavi.

3. SAR.SaveVolumeImage(Dir)

This function forms and saves a volumetric SAR image as a multipage tiff file, specified
by the string Dir.

All of these functions operate on a dB scale, with a colourmap specified by the peak intensity
and the dynamic range specified in the attribute Params.DynamicRange.

5 Matlab Integration

In Matlab, there is functionality for importing and executing Python code. This is done by
prefacing python functions with py. E.g. the code py.print(’foo’) will run a Python print
command. It is important to know that Matlab does not actually compile the Python code
itself, rather it delegates that task to a Python interpreter already installed on the computer.
to that end, one must specify the location of the Python executable using the pyversion

command.

In Matlab, the custom function PythonBP takes a set of input variables from Matlab and
uses them as arguments for the MSAR Python code. This is a function that is callable from
Matlab and has produced a significant speed improvement when compared to the equivalent
Matlab parallel CPU Backprojector.

However, since there is no convenient type matching between the two languages (e.g. a
Matlab double is translated to an int in Python) the MSAR module has been modified from
the original code to include these type conversions. Furthermore, Matlab cannot transfer
complex numbers, hence the real and imaginary components of the range profiles are passed
as separate arguments. This is inelegant, however it is a working solution

7

5.1 Installation

To associate a Python installation with Matlab, use the command pyversion. By default,
Python installs itself at C:\Users\...\appdata\Local\Programs\Python \Python36, ergo, to
associate Python with Matlab use:

>>>pyversion(’C:\ Users \...\ appdata\Local\Programs\Python\Python36\

python.exe’)

This command is something that could easily be inserted into a startup.m file for conve-
nience in the future.

Note: Matlab does not officially support Python environments such as those used by Ana-
conda. For this reason they recommend that packages are obtained directly through pip

rather than a package manager.

Finally, to make use of the GPU, the CUDA Toolkit needs to be associated with the software.
This is done by setting the, currently hardcoded, environment variable CUDA Home to the
location of the CUDA installation.

5.2 Usage

Both the PythonBP function and the MSAR module must be placed in the current Matlab
directory or in the Python search path.

Unlike the Backprojectors in the SAR class, the PythonBP function requires that the imaging
grid be formed ahead of time, there is also no option to run this code exclusively on the
CPU. To use, simply call the PythonBP function like any other Matlab function.

1. PythonBP(xm, ym, zm, RPvec, Ant1, Ant2, Freq, RangeSc,

RangeProfile Real, RangeProfile Imag)

This is the main function needed to call the MSAR module. It adds the current directory
to the Python search path and imports the module. Secondly, it calls MSAR.BP GPU to
run the Backprojection. Finally it reformats the output dataset into a Matlab complex
double.

6 Benchmarking

As stated, the GPU version of Backprojection is significantly faster than both single core
and parallel execution. However, this only holds true for images with greater than 1 MPixel,
otherwise parallel CPU execution is quicker 1.

Figure 1 illustrates this point by showing how the execution time scales with pixel count 2.

1These comparisons are generated using an NVIDIA Quadro RTX6000 and 2 Intel Xeon Gold 5118 12
core CPUs

2These comparisons are for the PythonBP function when compared to single core and parallel execution
in Matlab.

8

There is some time associated with transferring data onto and off of the GPU. Due to this,
it is recommended that if the GPU is to be used then the range profiles be made as small
as possible, via the RangeProfiles.RangeGate function. Doing so, reduces the transfer
overhead and accelerates the Backprojection.

1 2 3 4 5 6 7 8 9 10

·106

500

1,000

1,500

2,000

2,500

Number of Pixels

T
im

e
(s

ec
)

Time to form a Image With N Pixels

GPU
Single Core
Parallel

Figure 1: Time comparisons between single core, parallel, and GPU executions of Backpro-
jection. The time increases linearly with pixel count.

7 Considerations and Future Work

The art of utilising a GPU for SAR Backprojection is not new. It has been around for
over a decade now. As such there have been a slew of papers published on the topic. The
implementation chosen for this Backprojector was chosen due to its simplicity, making it
an ideal first foray into using a graphics card for heavy work. The approach taken here
follows a scheme described by Hu et al [4]. Small scale optimisations can be made, however
the speedup from said optimisations is likely to be minor. A substantial improvement was
proposed by Chapman et al in 2012 [5] whereby the image is segmented into blocks. once
each block is finished it transfers the data and acquires a new set independent of the other
blocks.

In summary, we have achieved a substantial speedup when compared to a Matlab implemen-

9

tation of Backprojection through leveraging the parallelisable nature of the Backprojection
Algorithm. Ideally, the transfer overhead moving the data onto and off of the GPU would
be reduced, as this is a significant bottleneck, however rewriting the code would take a large
amount of time and minor optimisations are unlikely to yield substantial improvements.

8 References

[1] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006–. [Online;
accessed ¡14/08/2019¿].

[2] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, LLVM ’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM.

[3] Writing cuda kernels. https://numba.pydata.org/numba-doc/dev/cuda/kernels.

html#introduction. [Online; accessed ¡14/08/2019¿].

[4] Kebin Hu, Xiaoling Zhang, Wenjun Wu, Jun Shi, and Shunjun Wei. Three GPU-based
parallel schemes for SAR back projection imaging algorithm. Proceedings - 17th IEEE
International Conference on Computational Science and Engineering, CSE 2014, Jointly
with 13th IEEE International Conference on Ubiquitous Computing and Communica-
tions, IUCC 2014, 13th International Symposium on Pervasive Systems,, pages 324–328,
2014.

[5] William Chapman, Sanjay Ranka, Sartaj Sahni, Mark Schmalz, Linda J. Moore, Ut-
tam Majumder, and Bracy Elton. Backprojection algorithms for multicore and GPU
architectures, 2012.

9 Appendix A - Specimen File Format

Attached is a subset of a generic .scn data file:

1 [EMScan]

2 Origin = Radar Scanner Controller v 2017.2.0 (Build 22)

3 Type = EMS v 1.02s

4 File = C:\ Users\Keith\Documents\EMScan\EMScan190322_081_0031.scn

5 Date = 2019 -03 -22

6 Time = 17:10:47.327

7 Polarisation = ’HH ’ of ’HH ’

8 Positions = 176

9 PositionCoordinates = (X,Y)

10 ScanType = Horizontal Scan

11
12 [Comment]

13 No comment

10

14
15 [Settings]

16 ScanType = 1

17 HorizontalAperture = 3500.0

18 HorizontalStartPosition = 0.0

19 HorizontalIncrement = 20.0

20 HorizontalReturnToStart = .false.

21 HorizontalHomeBeforeScan = .true.

22 HorizontalHomeDuringScan = .true.

23 HorizontalHomeBeforePolarisation = .false.

24 HorizontalDisableWhenDone = .true.

25 Aperture = 3500.0

26 StartPosition = 0.0

27 Increment = 20.0

28 DisableBoomAxisWhenDone = .true.

29 VerticalAperture = 1500.0

30 VerticalStartPosition = 0.0

31 VerticalIncrement = 25.0

32 VerticalReturnToStart = .false.

33 VerticalHomeBeforeScan = .false.

34 VerticalHomeDuringScan = .false.

35 VerticalHomeBeforePolarisation = .false.

36 VerticalDisableWhenDone = .true.

37 TransverseReturnToStart = .false.

38 TransverseDisableWhenDone = .true.

39 AllowPositionalScan = .true.

40 ReturnToStart = ’’

41 HomeBeforeScan = ’.false.’

42 HomeBeforePolarisation = ’’

43 LevelBeforeScan = .false.

44 LevelBeforePolarisation = .false.

45 WobbleDelay = 0.0

46 VVPolarisation = .false.

47 VHPolarisation = .false.

48 HHPolarisation = .true.

49 HVPolarisation = .false.

50 NumberOfScans = 1

51 TimeBetweenScans = 3910

52 TimeBetweenScansIsDelay = .true.

53 TimeBeforeDisablingAxes = 60

54
55 HorizontalScanSpeed = 40.0

56 HorizontalScanAcceleration = 20.0

57 HorizontalScanDeceleration = 20.0

58 HorizontalHomeSpeed = 40.0

59 HorizontalHomeAcceleration = 20.0

60 HorizontalHomeDeceleration = 20.0

11

61 HorizontalReturnSpeed = 40.0

62 HorizontalReturnAcceleration = 20.0

63 HorizontalReturnDeceleration = 20.0

64
65 [Units]

66 HorizontalPosition = mm

67 HorizontalSpeed = mm/s

68 HorizontalAcceleration = mm/s2

69
70 [PNA]

71 IdentificationString = Agilent Technologies ,N5230A ,MY46400279

72 PNAPowerOnDelay = 0.0

73
74 [NormalScanPNAData]

75 StartFrequency = 1.0E9

76 StopFrequency = 6.0E9

77 Averaging = .false.

78 AveragingFactor = 1

79 AverageMode = 1

80 DwellTime = 0.0

81 IFBandwidth = 3.0E3

82 NumberOfPoints = 2801

83 SweepDelay = 0.0

84 SweepTime = 0.90878445

85 MeasurementSweepTime = 0.90878445

86 TestPortPower = 9.0

87 PowerSlope = 0.0

88 PowerSlopeState = .false.

89 MadeChanges = .true.

90
91 [Home]

92 Horizontal axis , home offset = -0.01 mm

93
94 [Reading1of176]

95 0.00 1500.00

96 ’HH’

97 888.88 0.0

98 17:10:47.420

99 17:10:48.372

100 2801

101 1.50109399E-02 -2.92815547E-02

102 -1.63930859E-02 -3.17203850E-02

103 -3.58894803E-02 -2.50003883E-03

104 -2.02626251E-02 2.65208352E-02

105 7.04702875E-03 3.12650539E-02

106 3.08915116E-02 1.19293090E-02

107 2.48109307E-02 -1.73169635E-02

12

108 2.10503303E-03 -2.85631847E-02

109 -2.05997489E-02 -1.93624496E-02

13

