

# Visual Scene Understanding for **Self-Driving Cars using Deep** Learning and Stereovision

The aim of the project is to give awareness to self-driving cars regarding their surroundings using an image-based approach.

#### **Description:**

- Using pair of colour cameras
- Simultaneous recognition and detection of objects in images: instance segmentation
  - Pixel-wise semantic segmentation + disparity map
- Localisation of each instance w.r.t. the ego-vehicle

### **Objective:**

- Improve segmentation and detection rate
  - Differentiate overlapping instances Ο

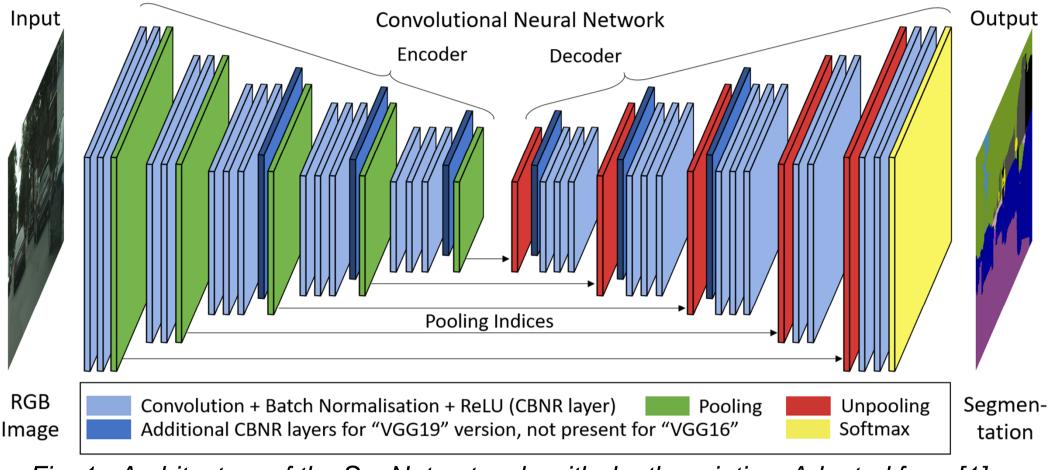



Fig. 1 - Architecture of the SegNet network, with depth variation. Adapted from [1].

Method:

Convolutional Encoder-Decoder architecture: SegNet  $\succ$  Modification of the encoder depth: VGG16  $\rightarrow$  VGG19

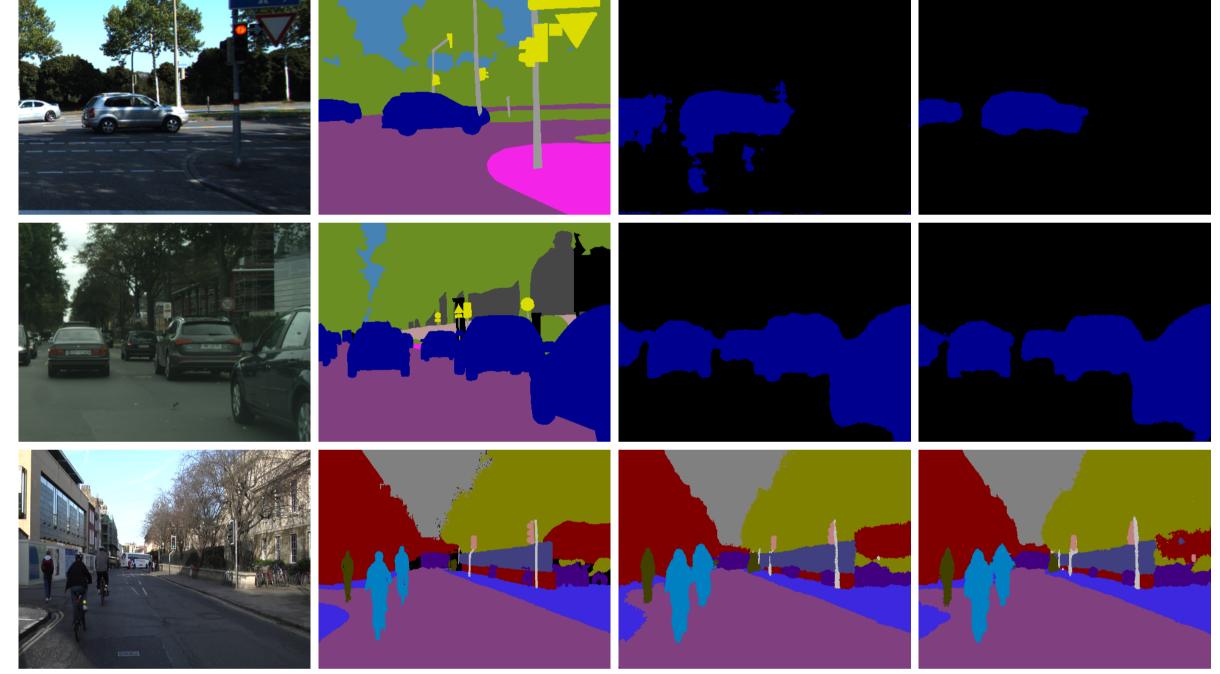



Fig. 2 – From left to right: original image, its corresponding ground truth, the segmentation prediction from SegNet whose encoder is initialised with VGG16, and the one initialised with VGG19.

| Trained on | Encoder | Global   | Mean     | Mean loU | Weight | Mean BF | Class Ac | Class Accuracy |         | Class IoU |                   | Class BF score |  |
|------------|---------|----------|----------|----------|--------|---------|----------|----------------|---------|-----------|-------------------|----------------|--|
|            |         | Accuracy | Accuracy |          | loU    | score   | Vehicle  | Other          | Vehicle | Other     | Vehicle           | Other          |  |
| KITTI      | 16      | 92.8     | 86.6     | 70.8     | 85.3   | 47.3    | 78.8     | 94.4           | 52.3    | 89.2      | 27.0              | 63.3           |  |
| CamVid     | 16      | 92.9     | 90.1     | 71.8     | 85.9   | 49.5    | 86.6     | 93.7           | 54.0    | 89.6      | 29.5              | 65.7           |  |
| Cityscapes | 16      | 97.6     | 97.5     | 86.6     | 92.7   | 72.1    | 97.4     | 97.7           | 79.0    | 94.3      | <mark>62.5</mark> | 80.0           |  |
| KITTI      | 19      | 94.5     | 86.0     | 74.4     | 87.5   | 49.6    | 75.3     | 96.7           | 57.7    | 91.0      | 31.3              | 63.5           |  |
| CamVid     | 19      | 95.9     | 87.9     | 79.0     | 89.6   | 58.2    | 77.7     | 98.0           | 65.6    | 92.4      | 42.5              | 69.9           |  |
| Cityscapes | 19      | 98.5     | 95.5     | 90.4     | 94.0   | 80.7    | 91.8     | 99.3           | 85.8    | 95.0      | 78.7              | 82.4           |  |

Table 1 – Quantitative comparison between SegNet's encoder initialised with VGG16 and VGG19. Trained and tested on different datasets for a binary classification.

#### **Data, Classes and Training:**

- Binary classification: Vehicle detector
- 11 classes of interest for autonomous driving applications considered
- Class balancing to reduce biases
- Pre-trained on ImageNet dataset
- CamVid, KITTI and Cityscapes

Adding more layers to a network, and creating more complex architectures allow the network to extract more complex features. However, the addition of parameters also poses a greater risk of overfitting the data and therefore not able to generalise on unseen images.

#### **Preliminary results:**

- > Overall accuracy increase: + 2%
- Enhancement of the contour definition (BF score): up to + 16%
- Increase if the number of correctly classified pixels (IoU): up to + 8%
- $\succ$  The gain in boundary accuracy is higher when the model is trained on a larger dataset.



#### What's next?

- Better boundary prediction = Fewer outliers in the disparity map per class
- Clustering methods will be used to identify each vehicle's instance and estimate its position relative to the ego-vehicle.

[1] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.

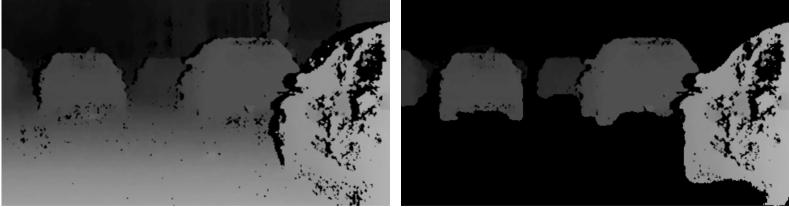



Fig. 3 – Left: disparity map, Right: disparity map for the vehicle class.

## Amélie Grenier\*, Dr D Nam, Dr L Feetham, Dr P Yoo\*\*, Prof M A Richardson and Dr L Chermak

Centre for Electronic Warfare, Information and Cyber Cranfield University, Defence Academy of the UK Shrivenham, SN6 8LA

# www.cranfield.ac.uk

\*a.grenier@cranfield.ac.uk, \*\*paul@dcs.bbk.ac.uk

