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Background

Figure: Heat sensitive film record of
impact test with a high explosive. Darker
regions correspond to higher
temperature.

» Focus on low-speed
impacts scenarios -
“insults”.

» Accidental ignition is
caused by “hot spots”.

» How are these generated?

Image from Hot spot ignition mechanisms for explosives and propellants, Field et al.
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Background

» Adiabatic compression of trapped gas spaces.

» Viscous heating of material rapidly extruded between the
impacting surfaces.

» Friction between the impacting surfaces, the explosive
crystals, and/or grit particles in the explosive layer.

» Localised adiabatic shear of the material during mechanical
failure.

Figure: Photograph of shear bands in a high explosive.

et al.

Image from Temperature-time response of a polymer bonded explosive in compression (EDC37), Williamson
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Low Speed Impact Modelling

Steven Test

Projectile

Stron ring
» Experiments conducted at BN . ﬁ/‘
AWE.
» Current LS-Dyna FE model ‘\
is currently main approach. \ e e
» High values of HERMES P g

Ignition parameter seen
near confining walls.

» Predicts scorching seen in
experiments.

Images courtesy of AWE from CEA Workshop on Explosives, Tours, France
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Low Speed Impact Modelling

Spigot Impact

» Localised impact.

> High values of HERMES i :
Ignition parameter at
leading edge of spigot.

» Impact velocity ranges
from 10 - 40 ms~!,

Images courtesy of AWE from CEA Workshop on Explosives, Tours, France
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Simplified Low Speed Impact Modelling

Motivation

Drop test’
» Improve safety during
everyday conditions.

» Avoid issues associated with
numerical models, e.g.
» severe mesh deformation,
» model break down near
walls.

20

Simple shear'

» Numerical validation.

» Focus on specific
mechanisms/gain physical
insight.

i. J.P. Curtis, A Model of Explosive Ignition due to Pinch, 38th International Pyrotechnics Seminar, Denver,
Colorado, USA.
ii. J.P. Curtis, Explosive Ignition due to Adiabatic Shear, 39th International Pyrotechnics Seminar, Valencia, Spain.
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Reactive Shear Bands

Shear band schematic

y=L RN N

uniform shear

y=—L \\ shear band

Figure: uniform shearing vs. shear banding
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Reactive Shear Bands

Governing equations

One-dimensional model of shear band:

pve = Sy, momentum balance;

pcTy = kT, + Bsy + pQAe’%, energy balance;

st = G(vy —7), elastic relationship;
¥ =7(s, T,7), plastic flow law;
t
v = / y(t') dt', plastic strain.
0

Here the dependent variables are velocity v, stress s, temperature T, and plastic strain
rate 4. The plastic strain = is determined by integration of strain rate. The material

constants p, G, ¢, k, B, Q, A, E and R, are the density, elastic shear modulus, specific
heat, thermal conductivity, Taylor-Quinney coefficient, heat of reaction, rate constant,

activation energy and molar gas constant, respectively.
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Reactive Shear Bands

Constitutive law

Exponential strain-rate law
(s, T) = M exp{~[B (Tp — T) + By (s, — 9)]},

where [, T, and s, are the reference strain-rate, temperature and
stress, respectively. The parameters By, By are related to
strain-rate sensitivity M and thermal sensitivity P via the
definitions

M=1 95 _B P:_Tpas_(B2>/<Bl>
"~ Spdloglh S T s, 0T Sp T,/

Shear band formation due to a thermal flux inhomogeneity, Dilellio, J.A. and Olmstead, W.E.
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Reactive Shear Bands

Numerical solution — “cohesive scheme”

Ay
Elastic wave speed:

S=+G/p.

Grid size: Ay.
Time step: At = Ay/S. Ay

t+ At
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(W =v)/Ay = (51,7, 1)

i F. Zhou et. al. A numerical methodology for investigating the formation of adiabatic shear bands. Journal

of the Mechanics and Physics of Solids, 2006.
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Reactive Shear Bands

Numerical solution — onset of shear band
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Reactive Shear Bands
Boundary Layer Analysis

» Heat flux inhomogeneity q(t) at y = 0 initiates a zone of
localised shearing.

» Plastic localisation zone is identified as a boundary layer.
» The typical length scale is taken to be the thermal length scale

1/2
/:< %0 >
pCGro ’

effectively placing the boundary at an infinite distance from
the shear band.
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Reactive Shear Bands
Boundary Layer Analysis

The non-dimensional governing equations are recast in the form

where

>

t
S5t = ,5_1/0 Syy(y, ) dt' +w -7,

A A E
T: = T, + As7 + QAexp <_T> ,

S KS 1/2 . v w
=2 /:( °.> L To=2 w=—,
Gro pcGl'o I ro
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Reactive Shear Bands
Boundary Layer Analysis

For early times the inert elastic solution given by

2

t e Ht—t) b
o [m(t—t)]1/2
5e()’> t) =1+ wt,

Te(y,t)=1+6 (t')dt',

is appropriate. Here the heat flux inhomogeneity used to initiate a
shear band is represented as

q(t) =oh(t), 0<h(t) <L.
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Reactive Shear Bands
Boundary Layer Analysis

» Identify small parameter e:

B B2 _ 1

= By le, =Bte, 0<ex,
0

where 1 and (3, are O(1) constants.

» Exploit the largeness of the (non-dimensional) pre-exponential

factor A:
L B2 E Tr
A = A jp— =L 1/2
0 TR exp <TR> ) E1/2 € )

where Tg is the critical reaction temperature, E is the
non-dimensional activation energy, and Ag is O(1).

16/25



Reactive Shear Bands
Boundary Layer Analysis

Boundary layer variables:

t
y=¢& t=ty,+er, £>0, T>—z"—>—oo,

with t, the critical plastic time.
Look for solution as a perturbation to the elastic solution:

T = To(e€, ty+e7) +eTa(E,7) + 2 To(, 1)+ -,
s =se(e, tp +e7) +es1(€,7) + 63/252(5,7) 4o

Define critical reaction time 7f as the solution of
Tr = Te(0, tp, + emr) + € T1(0, 7R) + o(¢),

where the function T is to be determined as part of the solution.

17/25



Reactive Shear Bands
Boundary Layer Analysis

Coupled equations for magnitudes of temperature and stress
perturbations at the centre of the shear band:

f(n) = /_n [7(n — ?7’)]_1/2{ exp [ + f(n') — g(n')]

- Neexp [\ = 1)+ F0) = )] |
g(n) =Npexp[n+f(n) —gn)l,

where n = 837 + log [’W] , and
3

Ba(pofB3)/? QA a
N =" Ap=—p, A= —.
P BlA(l —i—wtp) R bB;/Z t /83

Here 83 = fia+ Bow and a = T, (0, tp).
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Reactive Shear Bands
Boundary Layer Analysis

In terms of dimensional quantities the parameters are
approximately given by:

N pGT,(rew)/?

~ 1-100,
PM1/253/

Ao

QM1/2
R ~
cTp

~ 0-20,

a
AN~ —~0d<1.
" Bs
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Reactive Shear Bands

Boundary Layer Analysis
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Reactive Shear Bands

Boundary Layer Analysis
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Elastic-plastic Model
Boundary Layer Analysis

The reactive solution may be matched onto the earlier plastic

solution:
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Figure: The centreline temperature T = T, + € T7 and stress s = s. + 51 for

t = tp + 7. Here the critical plastic and reaction temperatures are T, = 1.01 and

Tr = 1.02, giving critical times t, = 0.02 and tg = 0.0419, respectively. The value of
the small parameter was ¢ = 1072,



Reactive Shear Bands

Boundary layer analysis — numerical comparison
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Figure: Comparison of the numerical and asymptotic solutions for the centreline
temperature and stress near to the critical plastic time scale t, = 0.195. Note that
e=10"3.
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Reactive Shear Bands

Conclusions

» Numerical solution of Thermo-Viscoplastic model suggest
boundary layer.

» Elastic-plastic model more amenable to boundary layer
methods.

» Plastic and reaction timescales allow for asymptotic solution
near to critical plastic and reaction times t, and tg.

» Key features of asymptotic solution compare well with
numerical solution using so-called “cohesive” scheme'.

» Can a similar approach model the onset of reaction in a
fully-formed shear band?

i F. Zhou et. al. A numerical methodology for investigating the formation of adiabatic shear bands. Journal
of the Mechanics and Physics of Solids, 2006.
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