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Abstract. We present an overview of the use of mathematical modelling in a nuclear arms verification
regime. Modelling is a powerful tool that is particularly useful in domains where there is limited data on
which to base decisions on, and where robust analysis is needed in order to give good decision-support.
Models at varying levels of abstraction can mimic different facets of a regime; from the ‘technical details
of an information barrier system’ during an inspection, through to ‘how to schedule inspections’ over a
whole inspection regime. Arms control verification processes do not in practice allow the parties involved to
gather complete information about each other, and therefore any model we use must be able to cope with
the limited information, subjective assessment and uncertainty in this domain. We carry out an analysis
of two such models using the capabilities of a Satisfiability Modulo Theory (SMT) solver [5]. We discuss
the models briefly, before analysing pertinent questions of interest to give examples of the power of this
approach.

1 Introduction

Arms control agreements are important tools that help nations to manage their security rela-
tionships with each other, particularly by reducing the risk of arms races, and which in some
cases seek to eliminate particularly destructive classes of weaponry entirely.

One role of the Atomic Weapons Establishment (AWE) is to provide decision support to the
UK Government on any potential nuclear arms treaty the UK may enter into. An arms control
agreement would inevitably involve some level of verification mechanism or regime to ensure
compliance with the treaty (for example: inspections, deployment of monitoring equipment,
etc). Although verification in a treaty is not mandatory, the absence of any form of verification
would be an absence of a deterrent to any nation that wished to ‘cheat’ the treaty. The design
and implementation of verification processes are complicated, intrusive and expensive however
- which imposes limits on the scale of that deterrent. This tension motivates the need for tools
that model, analyse and optimise verification processes in this domain.

The Non-Proliferation Treaty (NPT) bans the transfer of knowledge or capabilities between
nations that could enable them to build a nuclear weapon. During an arms control verification,
it will be impossible, therefore for states to gain complete information about each other: an
‘information barrier’ will need to exist, and states will often, and in some circumstances must,
withhold some information. Each must therefore make decisions about whether or not other
parties are complying with their obligations on the basis of limited information. They must
also make decisions during negotiation of a verification regime about the measures to be used,
and how and when to use the tools at their disposal during the implementation of that regime.
Decision-making under uncertainty is therefore a core element of the arms control verification
problem.

AWE’s approach to providing decision support in the face of this uncertainty is to use
mathematical models to capture their degree of belief in events or propositions, and their



confidence in such beliefs. Our work extends and combines the mathematical modelling concepts
and verification approaches AWE wish to use, such that they can cope with the inherent lack
of available data in this domain, and potentially be used to support policy-makers in practice.

2 Scenarios of Interest

Our models of interest follow the technical setup from the UK-Norway Initiative [13,16], which
is an early 2007, collaboration between the UK Ministry of Defence, the UK Atomic Weapons
Establishment, several Norwegian laboratories and the non-governmental organisation VERTIC
(Verification Research, Training and Information Centre) to work on the technical verification
of nuclear arms control. The verification techniques within the Initiative involve a radiation
detector that is used to determine the radioactive make-up of an item under inspection. Models
of this Initiative may be at varying levels of abstraction; ranging from the technical working of
an information barrier, to the higher-level ideas about how to plan out limited inspections as
part of a verification regime. We consider two such cases as examples.

2.1 Information Barrier

Consider the situation of two fictitious nations, N1 and N2. N2 is tasked with identifying
whether an item belonging to N1 and available to ‘inspect’ in a controlled inspection facility
is a nuclear weapon. The purpose of this inspection within an arms control agreement may be
that the item is on its way for decommissioning, destroying, storage, etc. Our mathematical
model of the scenario does not reflect what may happen to the material post-inspection, but
more detailed models may well reflect this.

The nations’ non-proliferation obligations and national security concerns dictate that the
design details of the item must be protected, and therefore the inspecting party will have no
visual access to the item. Instead the parties agree that the objects that they declare to be
weapons contain Plutonium with the isotopic ratio 240Pu:239Pu below a certain threshold
value, which they set at 0.1. In order to draw conclusions about whether an item presented for
inspection is a weapon, the inspecting party uses an information barrier (IB) system comprising
a HPGe detector and bespoke electronics with well-understood performance characteristics (see
Figure 1, [16]) to conduct measurements on the object while the object is concealed in a box.
The IB system displays a green light if it detects a gamma spectrum indicative of the presence of
Plutonium with the appropriate isotopic ratio; if it does not detect this spectrum for whatever
reason then it shows a red light. No other information is provided, and therefore weapon design
information is protected [13].

Nation N2 believes that it may be possible for nation N1 to spoof a radioactive signal
(or in some way provide a surrogate) to fool the detector, or that N1 may have just placed
Plutonium with the appropriate isotopic ratio in the box rather than a weapon. These subjective
assessments should be reflected in the model alongside the error rates of the IB system. In
order to deter cheating, N2 is allowed to choose the IBs used in the verification from a pool of
machines. They are also able to take some unused IBs away for authentication from the same
pool. Authentication activities are designed to check whether or not the IB has been tampered
with. It should be noted that N2 are not allowed to take the IBs used in verification activities in
case there is any residual information to be gained following their use. This selection process is
designed to ensure that a nefarious host is held at risk of detection, because in order to tamper
with the IBs used in verification it would have to run the risk of one or more tampered IBs
being selected for authentication. Although authentication cannot be assumed to be perfect -
and this too should be modelled - the prospect of detection may still give pause to such a host.



Fig. 1. The Information Barrier built as part of the UK-Norway Initiative [13, 16]. The option to ‘calibrate’, ‘measure’
and ‘calibrate’ again can be seen on the front of the panel, along with the corresponding (unlit) green and red lights.

2.2 Planning of an arms verification regime

Consider two fictitious nation states, who have agreed to increase transparency in their nuclear
arsenals by exchanging information on the size of those arsenals on a regular basis. In our model,
the two nations each hold a certain number of weapons, declare (not necessarily truthfully) to
the other party that they have no more than a certain number of weapons, and hold beliefs
about the size of the other nation’s arsenal.

Two types of inspection are carried out by each nation to determine the consistency of
the others’ nuclear arsenals with their declarations: scheduled inspections, which occur at pre-
agreed intervals; and surprise, unscheduled inspections which are carried out at the discretion
of the inspecting nation. We assert the following:

– Neither type of inspection is perfect, given information barriers that exist, the qualitative
nature of some of the information collected, and the error rate of detectors used in the
inspections.

– Unscheduled inspections are more effective at detecting cheating. This comes intuitively
down to the likelihood of the host being less prepared than for a scheduled inspection.

The inspections are assumed to follow a protocol similar to that described in Subsection 2.1.
Let us here be more concerned with the dynamics of the system operating temporarily than
with how the results are obtained for an inspection.

Each nation may build or dismantle nuclear weapons in this model. Their decisions in this
respect are partly influenced by the ongoing arms control processes, and by a combination of
their assessment of the difference between the two arsenals, their tendency to fear the other
nation (or not), and – indirectly – by their overall strategy in relation to the verification process.

If one nation is found by the other to have made a false declaration then it will incur a cost of
some kind. This might be financial (economic sanctions for example), reputational, diplomatic,
or any mix of these or other factors. As with the inspection process, we do not model the
details of the cost here because they are not particularly relevant to the analysis we are trying
to carry out. Instead we are more interested in understanding “hidden” factors - such as the



actual number of weapons held by the other nation - and their dependencies, and in modelling
the consequences of decisions - such as the frequency of scheduled inspections or the timing of
the unscheduled inspections available to each nation.

3 Our Approach

There are of course multiple ways of modelling these scenarios. One advantage of our approach
in general is that it is able to compare different such models analytically: as seen in [1] where
we compare multiple models of varying levels of abstraction and assess how the abstraction
process may lead to different insights and decision support.

Our approach is to model the various inspections control processes in a software tool known
as a Satisfiability Modulo Theories (SMT) solver [14, 15]. SMT is uncomfortable with solving
more advanced, non-linear mathematical concepts, however. The project itself has been con-
cerned with engineering other languages to take up some of this load, so that SMT only has
to check ‘satisfiability’ (and does a minimum of other computations itself). This is particularly
important to AWE, because the mathematical models they are interested in using can be large
and complicated.

We achieve this by integrating the solver with Python and other symbolic computation
packages, leaving SMT to decide the satisfiability of logical formulas that capture the essence
of questions we ask about models. This offers a general purpose approach to the automated
analysis of mathematical models, and in our case we use SMT to deal with uncertainty in
(or absence of) data in the model by expressing such uncertainty as the under-specification of
probabilities or quantities in the models.

For instance, if we were unsure as to the probability of cheating by a party in a treaty, we
could call such a probability x, instead of some concrete probability value 0 to 1. We would
then limit x such that 0 ď x ď 1. Similarly, if we were unsure on the initial number of weapons
a state held before entering into a treaty, we could call this z, and constrain z by the lower and
upper bounds of our estimations, say, 900 ď z ď 1100. In other words, we don’t have to choose
values that we don’t know for certain. We can assign a variable, and pick a range of possible
values for that variable, and study the impact of such uncertainty in the model.

For this approach of under-specified parameter values, we have so far considered Bayesian
Belief Networks (BBNs) [1, 4], Game theoretic models [2] and dynamical systems [3].

BBNs allow the representation and analysis of multiple variables, the causal relationships
between them, and their associated conditional probabilities. They are particularly useful for
making judgments under uncertainty, in representing probabilistic reasoning, and in handling
objective and subjective data. This makes them attractive tools in principle for describing and
analysing arms control processes.

Bayesian Belief Networks (BBNs) are probabilistic models that encode events of interest
in a node-structure. BBNs are dependency graphs, displayed diagrammatically, as a directed
acyclic graph (DAG) [11]. Dependencies of events are captured and expressed in probability
tables, with observations of events influencing the chances of related events by “updating” the
probabilities throughout the network. Nodes with ‘parents’ have probability tables that list the
probability distributions conditionally on the aforementioned parent events. These have been
used to assess the true value of beliefs held after observations of certain events in order to
provide an untainted logical viewpoint on a situation.

It can be extremely difficult to set appropriate and defensible values for all conditional prob-
abilities, which challenges their use in practice. At the 20th European Symposium on Research
in Computer Security (ESORICS2015), the authors proposed a methodology to address this by



Fig. 2. A small, simplistic example Bayesian Belief Network model of an arms inspection. The item in the Box either
is or isn’t a weapon; depending on whether it is or isn’t, the host may choose to Spoof the radiation with a surrogate
source. Even if the Box does contain a weapon, the item in question may or may not have weapons grade material that is
of a Detectable ratio for the detector; influencing whether the Detector light on the information barrier goes Green or Red.
Along with whether or not the inspector believe what the host’s facilities team are saying to them in their conversations
with them (node Conversation Belief), and whether or not the inspecting nation believes the host has the Ability to Build
a weapon, the Detector Light result feeds into whether, overall, the inspections Believe a Weapon is Present.

extending the BBN framework to allow representation of sets of BBNs [1] using the replacement
of probabilities with symbolic variables as described above. We refer to this as a constrained
BBN (cBBN). A cBBN represents a set of Bayesian Belief Networks by symbolically expressing
uncertainty about probabilities and scenario-specific constraints that are not representable by
a conventional BBN, but can still be symbolically evaluated. This extension retains the advan-
tages of BBNs, allows the incorporation of any scenario constraints, and assesses the robustness
of models and their analyses when little or no contextual data are available.

In Figure 2, we include a small simplistic example for a reader to see, and encourage inter-
ested readers to view [4], which includes a much more detailed model designed by AWE.

The underspecification of pay-offs in game theory, or variables in a dynamical system allow
us to model uncertainty in such models in a similar way to our cBBNs. Dynamical systems
model the interactions and human decision making of parties in an arms control process through
the updating of equations over time. Equations are written to model variables of interest, for
instance, the arms stocks declared at each time point, the actual number of weapons, what each
party to the treaty believes about each other, etc. Figure 3 details the equations of a sample
system that models the use of scheduled and unscheduled inspections at varying time points in
a treaty’s lifetime. We refer to [3] for a detailed explanation of the system and its justifications.

Game theory - the ‘study of mathematical models of conflict and cooperation between
intelligent, rational decision makers’ [7] - has an established history in defence analysis, perhaps
most famously in the context of nuclear deterrence (see for example [8] or the normal form games
of [9, 10] and Figure 4). In an arms control context, an inspecting party seeks data to support
an assessment of another party’s compliance with an agreed set of rules. Whilst both parties



Fig. 3. A Dynamical Systems model that predicts the change in the number of nuclear weapons a state i has at time
t, W i

t , the beliefs about the number of weapons nations have about each other Bij
t - based on inspection results Iijt

and declarations Di
t about the size of their arsenals. θ controls when to hold a scheduled inspection, according to the

periodicity and shift defined in the model setup.
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Fig. 4. Extensive form game theory model of how to best schedule inspections. This is based on the model of Dresher
and assigns payoffs based on whether an inspection was used wisely to detect cheating, or not. The modeller decides
whether to inspect or not based on the maximal utility of the system, and the the legality of the inspected nation’s
behaviour is left to chance (the probability of which can be the same throughout the model, set explicitly for different
values of n and m, or can be assigned different probabilities randomly [6]).



have an interest in being seen to comply with this set of rules, other national interests may
differ. This in turn leads to different objectives for the parties involved, the pursuit of which
can be analysed by studying mathematical representations of inspections in a non-cooperative
two-player game.

As BBNs, dynamical systems and game theory models can all be expressed as equations,
we encode them as constraints in our tool. SMT is then able to apply logical formulae to the
constraints, and check to see whether they are all satisfiable (in which case it returns a concrete
realisation of such values that ‘work’), or unsatisfiable (in which case it is impossible).

Using logical arguments, we can then extract more useful information. For instance, when
we seek the maximum of a variable, we recursively add extra constraints to the SMT solver
that seek a ‘larger’ value of that variable than the one it previously returned. Eventually, the
model becomes unsatisfiable, meaning that the penultimate result was the maximum. Likewise
we can see at which points satisfiable constraints become unsatisfiable, and how far we can push
such constraints, to categorise ‘impossible’ scenarios. ‘Impossible’ may mean that we cannot
realise something we expect to be realisable (detecting a problem of the model or proposed
verification process that may then be re-addressed); or it may mean that all scenarios satisfy a
desired invariant, where the formula analysed is the negation of that invariant.

4 Questions

We are now able to answer pertinent questions of our BBN inspection model. An example
question could be of the following form. ‘We observe no tamper abnormalities on the information
barriers or detectors. What effect does uncertainty over whether a body scanner (to check for
surrogate sources of radiation) is working correctly have on the likelihood of the information
barrier reporting positively that nuclear material is present? ’. Over this uncertainty, we can
then test our model and report back the range of results as under-specification, say x, varies.
We can also compute how sensitive to change the results are, and whether any particular values
of x are better or worse than others [12].

We can take multiple different BBN models at once and compare their results; checking
for areas of agreement and disagreement between models. A decision maker could use the in-
formation gleaned to make an informed decision about how to authenticate the body scanner,
weighing the cost of body scanner authentication against the cost of developing and employing
more advanced information barrier authentication capabilities to conduct a cost-benefit analy-
sis. They could also query in detail how the results of these cost-benefit analyses might change
as new information is learned or new techniques deployed. This capability might help decision-
makers to balance their priorities and to gain the best assurance possible without excessive cost
that the verification regime they implement is effective.

Similarly, we can ask of our Dynamical Systems model: ‘given uncertainty in our treaty
partner’s initial weapon stockpile, with scheduled inspections every 6 months and 3 other un-
scheduled inspections per year, what timing for unscheduled inspections leads to the minimum
difference between our partners’ declaration and our assessment of their actual arsenal? ’. The
results to such a query would be returned along the lines of ‘for all z covered by the range
low ď z ď high where z represents our treaty partner’s initial weapon stockpile, assuming our
model of how beliefs and weapon numbers change over time is correct, then we would be best
holding inspections in months four, sixteen and eighteen, (say...) to achieve our goals’.

We have harnessed a supercomputer to analyse over 134 million possible inspection timelines,
allowing the software to compute an inspection schedule over a treaty lifespan of over 2 years



for which performance against one or more measures of interest is optimised. The results can
then be studied to assist in decision-making regarding proposed arms control regimes.

These new modelling and analysis methods allow for a much more sophisticated approach
to modelling arms control where we accept that there are somethings we just can’t know, but
we account for them and can still prove that the decision advice given holds true irrespective
of the actual concrete value those variables take.

5 Conclusions

In this paper, we have provided an overview of the work done on the analysis of inspection
regime models. We have introduced a methodology for dealing with uncertainty in Bayesian
Belief Networks, Dynamical Systems and Game Theoretic models. The result is an automated
approach that could allow a decision maker to ask pertinent questions of an arms control
scenario, under uncertainty.

Overall, we have explained how we can generalise models of historic importance in the study
of nuclear arms dynamics, whilst effectively addressing the non-linear modelling concerns of
selecting ‘correct’ pay-off values, probabilities, or values of variables and automatically analysing
questions of interest for a range of possible values. This allows us to support decision making in
particular in our scenario of interest. We believe that analysis of this type was not previously
supported; and the capability to do this is useful for scenarios such as the one discussed here
as a case study; in supporting decision making.
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