Optical Detection of Glucose Using 3D-Printed Microfluidic Platform

A. M. Tothill*, M. Partridge, S. W. James and R. P. Tatam

Engineering Photonics, Cranfield University, Cranfield, Bedfordshire MK43 0AL, England, UK.

Cranfield UNIVERSITY

Introduction

An aging population in combination with an obesity and diabetes epidemic is placing huge burden on health care services and increasing the need for point-of-care testing for serious pathologies. The advance of solid freeform fabrication techniques such as 3D-printing has significantly improved the ability to prepare solid structures with precise geometries; this provides a means for rapid device development for point-of-care devices. However, 3D-printed optical assay platforms can suffer from the poor optical properties and performance of polymers available.

- To develop a cheap disposable 3D-printed microfluidic optical device.
- Improve optical transparency of the devices such that optical colourimetric assays can be performed within.
- Produce calibration curve of colourimetric glucose assay performed within device.

A Microfluidic device was designed using CAD software and fabricated using an Ultimaker 2+ 3D-printer. Optical transparency was improved using optimisation techniques of the printer and print conditions. Further optical improvement has been achieved with solvent vapour treatment. A colourimetric glucose assay was performed within the device and the absorbance determined via a spectrometer.

The glucose assay utilized an enzymatic cascade of glucose oxidase and horseradish-peroxidase was used for the oxidative coupling of 4-aminoantipyrine and chromotropic acid to produce a blue quinoneimine dye. The assay was performed in a the 3Dprinted prototype, the absorbance was quantified and a glucose

Methodology

Figure 2: Proposed mechanism for peroxidase-catalysed formation of a quinoneimine dye.

concentration curve was successfully produced.

Figure 1: (A) CAD design of microfluidic device. Channel diameter 500 µm. (B) Image of plastic sample.

Figure 3: The effect of print resolution/layer height on optical transparency.

Figure 4: The effect of print speed on optical transparency.

Figure 5:The effect of acetone vapour treatment on improving optical transparency.

Figure 8: Quinoneimine dye absorbance at 590 nm. CV 2.4%.

Figure 7: Absorbance spectra of quinoneimine dye produced by assay in 3D-printed device.

Conclusions

The current work demonstrated that with proper optimisation of equipment and operating parameters, it is possible to produce microfluidic devices suitable for point- of-care testing using a 3D-printer. The optical transparency of the devices was improved using various techniques during and after manufacture to such a point that optical colourimetric assays can be performed in the device. The data gathered shows that excellent assay reproducibility is possible in the 3D-printed device. Future work focuses on blood and urine analysis and complex 3D-printed devices such as lab-on-a-disc assay platforms, providing mobile diagnostic information efficiently and cheaply for personal health monitoring.

www.cranfield.ac.uk

Cranfield University, Cranfield, Bedfordshire MK43 0AL, England, UK. Corresponding author: a.m.tothill@cranfield.ac.uk.

Microfluidic Device Download Link

Poster/Data Download Link