Cranfield Online Research Data (CORD)
Browse
Thomas Campbell.pptx (1.23 MB)
Download file

Bohmian Molecular Dynamics Simulations of Warm Dense Matter

Download (1.23 MB)
presentation
posted on 2020-12-07, 14:23 authored by Thomas Campbell
The computational demands of modelling large numbers of coupled electrons and ions have long been considered insurmountable, despite advances and refinements in density functional theory (DFT) calculations. However, a different approach to modelling quantum interactions, via application of the Bohmian trajectories formalism, can overcome this hurdle. We present further results from a new Bohm - molecular dynamics approach (Bohm MD). The static results of our simulations are validated by DFT results – our static ion-ion structure factor of aluminium at 5.2 g cm-3and 3.5 eV shows excellent agreement with both orbital free and Kohn Sham DFT. We then use Bohm MD to extract dynamic results, not only the ion-ion dynamic structure factor which provides a direct link to experimental observables, but also, unprecedentedly, the ion-electron and electron-electron dynamic structure factors.Thus Bohm MD provides a self-consistent approach to non-adiabatic investigation of dynamic modes in systems of thousands of particles.

Funding

ESPRC and Royal Society

History

Authoriser (e.g. PI/supervisor)

m.j.smith@cranfield.ac.uk

Usage metrics

    Exports